-
单向陷门函数 编辑
单向陷门函数是有一个陷门的一类特殊单向函数。单向陷门函数包含两个明显特征:一是单向性,二是存在陷门。所谓单向性,也称不可逆性,即对于一个函数y=f(x),若已知x要计算出y很容易,但是已知y要计算出x=f ^(-1) (y)则很困难。单向函数的命名就是源于其只有一个方向能够计算。所谓陷门,也被称为后门。对于单向函数,若存在一个z使得知道z则可以很容易地计算出x=f ^(-1) (y),而不知道z则无法计算出x=f ^(-1) (y),则称函数y=f(x)为单向陷门函数,而z称为陷门。
所谓单向函数,人们认为有许多函数正向计算上是容易的,但其求逆计算在计算上是不可行的,也就是很难从输出推算出它的输入。即已知x,我们很容易计算f(x)。但已知f(x),却难于计算出x。
在物质世界中,这样的例子是很普遍的,如将挤出的牙膏弄回管子里要比把牙膏挤出来困难得多;燃烧一张纸要比使它从灰烬中再生容易得多;把盘子打碎成数千片碎片很容易,把所有这些碎片再拼成为一个完整的盘子则很难。类似地,将许多大素数相乘要比将其乘积因式分解容易得多。数学上有很多函数看起来和感觉像单向函数,我们能够有效地计算它们,但我们至今未找到有效的求逆算法。我们把离散对数函数、RSA函数作为单向函数来使用,但是,目前还没有严格的数学证明表明所谓这些单向函数真正难以求逆,即单向函数是否存在还是未知的。
在密码学中最常用的单向函数有两类,一是公开密钥密码中使用的单向陷门函数、二是消息摘要中使用的单向散列函数。
单向函数不能用作加密。因为用单向函数加密的信息是无人能解开它的。但我们可以利用具有陷门信息的单向函数构造公开密钥密码。
1、本站所有文本、信息、视频文件等,仅代表本站观点或作者本人观点,请网友谨慎参考使用。
2、本站信息均为作者提供和网友推荐收集整理而来,仅供学习和研究使用。
3、对任何由于使用本站内容而引起的诉讼、纠纷,本站不承担任何责任。
4、如有侵犯你版权的,请来信(邮箱:baike52199@gmail.com)指出,核实后,本站将立即删除。

















