-
弱哥德巴赫猜想 编辑
在数论中,弱哥德巴赫猜想(又称为奇数哥德巴赫猜想、三重哥德巴赫猜想或三质数问题)是这样一个命题:任何一个大于7的奇数都能被表示成三个奇质数的和。(一个质数可以被多次使用)2013年5月,巴黎高等师范学院研究员哈洛德·贺欧夫各特发表了两篇论文,宣布彻底证明了弱哥德巴赫猜想。
2002年,香港大学的廖明哲与王天泽把“充分大”的下限降至e^3100,即约2*10^1346。不过这仍然超出了计算机验证的范围(计算机仅对10^18以下的数验证过强哥德巴赫猜想,弱哥德巴赫猜想的验证范围比此略多)。 不过这一下限已经足够小,使得比其小的单个奇数都可以用现有的素性测试来验证,如椭圆曲线素性测试已被用来验证多达26,643位数的素性。
1997年,德国数学家Deshouillers、瑞典数学家Effinger、荷兰数学家Te Riele与英国数学家Zinoviev证明,在广义黎曼猜想成立的前提下弱哥德巴赫猜想是完全成立的。这一结果由两部分构成,其一是证明了大于10^20时弱哥德巴赫猜想成立,而小于此数的情况则由计算机验证得到。
法国数学家Olivier Ramaré于1995年证明,不小于4的偶数都可以表示为最多六个素数之和,而Leszek Kaniecki则证明了在黎曼猜想成立的前提下,奇数都可表示为最多五个素数之和。 2012年,澳大利亚数学家陶哲轩在无需黎曼猜想的情形下证明了这一结论。
2012年到2013年,秘鲁数学家哈洛德·贺欧夫各特发表了两篇论文 ,将这个下界降至了约10^30。贺欧夫各特的同事 David Platt 用计算机验证在此之下的所有奇数都符合猜想,从而完成了弱哥德巴赫猜想的全部证明。
1、本站所有文本、信息、视频文件等,仅代表本站观点或作者本人观点,请网友谨慎参考使用。
2、本站信息均为作者提供和网友推荐收集整理而来,仅供学习和研究使用。
3、对任何由于使用本站内容而引起的诉讼、纠纷,本站不承担任何责任。
4、如有侵犯你版权的,请来信(邮箱:baike52199@gmail.com)指出,核实后,本站将立即删除。