-
塞曼效应 编辑
塞曼效应是指原子在外磁场中发光谱线发生分裂且偏振的现象;历史上首先观测到并给予理论解释的是谱线一分为三的现象,后来又发现了较三分裂现象更为复杂的难以解释的情况,因此称前者为正常或简单塞曼效应,后者为反常或复杂塞曼效应。
塞曼效应是法拉第磁旋光效应之后发现的又一个磁光效应。这个现象的发现是对光的电磁理论的有力支持,证实了原子具有磁矩和空间取向量子化,使人们对物质光谱、原子、分子有更多了解,特别是由于及时得到洛仑兹的理论解释,更受到人们的重视,被誉为继X射线之后物理学最重要的发现之一。
1902年,塞曼与洛仑兹因这一发现共同获得了诺贝尔物理学奖(以表彰他们研究磁场对光的效应所作的特殊贡献)。
塞曼效应实验仪
塞曼效应的发现者——荷兰物理学家塞曼。
应用正常塞曼效应测量谱线分裂的频率间隔可以测出电子的荷质比。由此计算得到的荷质比数值与约瑟夫·汤姆生在阴极射线偏转实验中测得的电子荷质比数量级是相同的,二者互相印证,进一步证实了电子的存在。
塞曼效应也可以用来测量天体的磁场。1908年美国天文学家海尔等人在威尔逊山天文台利用塞曼效应,首次测量到了太阳黑子的磁场。
1912年,帕邢和拜克(E.E.A.Back)发现在磁场中,反常塞曼效应又表现为三重分裂,叫作帕邢-拜克效应。这些现象都无法从理论上进行解释,此后二十多年一直是物理学界的一件疑案。正如不相容原理的发现者泡利后来回忆的那样:“这不正常的分裂,一方面有漂亮而简单的规律,显得富有成果;另一方面又是那样难以理解,使我感觉简直无从下手。”
1921年,德国杜宾根大学教授朗德(Landé)发表题为:《论反常塞曼效应》的论文,他引进一因子g代表原子能级在磁场作用下的能量改变比值,这一因子只与能级的量子数有关。
1925年,乌伦贝克与古兹米特"为了解释塞曼效应和复杂谱线"提出了电子自旋的概念。1926年,海森伯和约旦引进自旋S,从量子力学对反常塞曼效应作出了正确的计算。由此可见,塞曼效应的研究推动了量子理论的发展,在物理学发展史中占有重要地位。
塞曼效应是物理学史上一个著名的实验。荷兰物理学家塞曼在1896年发现:把产生光谱的光源置于足够强的磁场中,磁场作用于发光体使光谱由一条谱线分裂成几条偏振化谱线的现象称为塞曼效应。若一条谱线分裂成三条,裂距按波数计算正好等于一个洛仑兹单位的现象称为正常塞曼效应;而分裂成更多条且裂距大于或小于一个洛仑兹单位的现象称为反常塞曼效应。
塞曼效应的产生是原子磁矩和外加磁场作用的结果。根据原子理论,原子中的电子既作轨道运动又作自旋运动。原子的总轨道磁矩μL与总轨道角动量pL的关系为:
原子的总自旋磁矩μS与总自旋角动量PS的关系为:
其中:m为电子质量,L为轨道角动量量子数,S为自旋量子数,为普朗克常数除以2π,即
图1 原子磁矩与角动量的矢量模型
其中,J为总角动量量子数,g为朗德因子。对于LS耦合,存在
图2 μJ和pJ的进动
其中,β为pJ与B的夹角。角动量在磁场中取向是量子化的,即:
其中,M为磁量子数。因此,
可见,附加能量不仅与外磁场B有关系,还与朗德因子g有关。磁量子数M共有2J+1个值,因此原子在外磁场中,原来的一个能级将分裂成2J+1个子能级。
未加磁场时,能级E2和E1之间的跃迁产生的光谱线频率ν为:
(1)外加磁场时,分裂后的谱线频率ν’为:
(2)分裂后的谱线与原来谱线的频率差Δν’为:
(3)定义
用波数间距Δγ表示为:
(4)能级之间的跃迁必须满足选择定则,磁量子数M的选择定则为ΔM=M2-M1=0,%20±1;而且当J2=J1时,M2=0%20→M1=0的跃迁除外。
当ΔM=0时,产生π线,沿垂直于磁场方向观察时,π线为光振动方向平行于磁场的线偏振光,沿平行于磁场方向观察时,光强度为零,观察不到(见图3)。
当ΔM=±1时,产生σ线,迎着磁场方向观察时,σ线为圆偏振光,ΔM=+1时为左旋圆偏振光,ΔM=-1时为右旋圆偏振光。沿垂直于磁场方向观察时,σ线为线偏振光,其电矢量与磁场垂直(见图3)。
只有自旋是单态,即总自旋为0谱线才表现出正常塞曼效应。非单态谱线在磁场中表现出反常塞曼效应,谱线分裂条数不一定是三条,间隔也不一定为一个洛仑兹单位。
例如钠原子的589.6nm和589.0nm的谱线,在外磁场中的分裂就是反常塞曼效应。589.6nm的谱线为2P1/2态向2S1/2态跃迁产生的谱线。当外磁场不太强的时候,在外磁场作用之下,2S1/2态能级分裂成2个子能级,2P1/2态也分裂成2个子能级,但由于两个态朗德因子不同,谱线分裂成4条,中间两条为π线,外侧两条分别是σ+线与σ-线。589.0nm的谱线为2P3/2态向2S1/2态跃迁产生的,2P3/2态能级在外磁场不太强时分裂成4个子能级,因此589.6nm的谱线分裂成六条。中间两条π线,外侧两边各2条σ线。
原子核的磁矩比电子磁矩小大约三个数量级。如果只考虑电子的磁矩对原子总磁矩的贡献,那么磁场引起的附加能量为ΔU%20=%20-μB%20=%20-μZB%20=%20mJgJμBB
这里将磁感应强度B的方向取为z轴方向,μZ是磁矩在z方向上的投影。mJ是电子总角动量J在z方向投影的量子数,可以取-J,-J+1,…J-1,J共2J+1个值,gJ是电子总角动量的朗德因子,μB是玻尔磁子。
这样,原子的每一个能级分裂成若干分立的能级,两个能级之间跃迁的能量差为ΔE'%20=%20hv'%20=%20E'2%20-%20E'1=%20E2-%20E1%20+%20(m2Jg2J-%20m1Jg1J)μBB
对于自旋为零的体系有g1J=g2J=1。由于跃迁的选择定则ΔmJ%20=%20m2J%20-%20m1J%20=%200,±1,频率ν只有三个数值:
因此一条频率为ν的谱线在外磁场中分裂成三条谱线,相互之间频率间隔相等,为
镉的643.847nm(1D2态向1P1态的跃迁)谱线在磁场不太强时就是表现出正常塞曼效应。这两个态的g都等于1,在外磁场中,1D2分裂成5个子能级,1P1分裂成3个子能级,由于选择定则,这些子能级之间有9种可能的跃迁,有3种可能的能量差值,所以谱线分裂成3条。
正常塞曼效应
钠D线在磁场中的反常塞曼效应。
钠D线在磁场中的反常塞曼效应。
谱线分裂成4条,中间两条是π线,外侧两条分别是σ+线和σ-线。589.0nm的谱线是2P3/2态向2S1/2态跃迁产生的,2P3/2态能级在外磁场不太强时分裂成四个子能级,因此589.0nm的谱线分裂成6条。中间两条π线,外侧两边各两条σ线。
2. 由物质的塞曼效应分析物质的元素组成。
3.原子吸收、原子发射光学背景校正技术。
1、本站所有文本、信息、视频文件等,仅代表本站观点或作者本人观点,请网友谨慎参考使用。
2、本站信息均为作者提供和网友推荐收集整理而来,仅供学习和研究使用。
3、对任何由于使用本站内容而引起的诉讼、纠纷,本站不承担任何责任。
4、如有侵犯你版权的,请来信(邮箱:baike52199@gmail.com)指出,核实后,本站将立即删除。