-
干涉测量法 编辑
干涉测量法(Interferometry):用多架望远镜把来自同一天体的光或无线电波进行组合,以增加分解。常见的有光学干涉测量、长度测量、干涉光谱、射电干涉测量。
中文名:干涉测量法
外文名:Interferometry
类别:测量方法
应用:对恒星角直径的测量
长度测量是光学干涉测量最常见的应用之一。如要测量某样品的绝对长度,最简明的方法之一是通过干涉对产生的干涉条纹进行计数;若遇到非整数的干涉条纹情形,则可以通过不断成倍增加相干光的波长来获得更窄的干涉条纹,直到得到满意的测量精度为止。常见的方法还包括惠普公司研发的惠普干涉仪,它通过外加一个轴向磁场使氦-氖激光器工作在两个相近频率,从而发出频率相差2兆赫兹的两束激光,再通过偏振分束器使这两束激光产生外差干涉。干涉得到的差频信号被光检测器记录,而待测样品引起的光程差变化则可以通过计数器表示为光波长的整数倍。惠普干涉仪可以测量在60米左右以内的长度,在附加其他光学器件后还可以用于测量角度、厚度、平直度等场合。此外,还可以通过声光调制的方法得到差频信号,并且这种方法能获得更高的差频频率,从而可以从差频信号中得到更高的计数。
长度测量的另一类情形是测量长度的变化,常见的方法如借助声光调制产生的外差干涉,差频信号所携带的相位差会被光检测器记录,从而得到长度的变化。在测量像熔凝石英这样热膨胀系数很低的材料的热膨胀系数时,还经常用到一种更精确的方法:将两面部分透射部分反射的玻璃板置于待测样品的两端,从而构成一个法布里-珀罗干涉仪。使用两束发生外差干涉的激光,并通过反馈将其中一束激光的频率锁定到法布里-珀罗干涉仪的一个透射峰值频率上。这样,当样品发生热膨胀而改变法布里-珀罗干涉仪的长度时,透射峰值频率的变化会引起被锁定的激光频率的相应变化,这一变化也会反映到外差信号中从而被探测到。
光谱仪可分辨的两条谱线的中心波长与恰好可分辨的波长差的比值,称作光谱仪的色分辨本领。对利用色散效应的棱镜光谱仪以及利用衍射效应的光栅光谱仪,其色分辨本领都不会超过106的量级。然而若采用法布里-珀罗干涉仪,由于透射峰的半宽等于干涉仪的自由光谱范围除以它的细度:
\Delta \nu = \frac{\rm FSR}{\mathcal{F}} = \frac{c/2nd}{\mathcal{F}}\,
并由干涉条件2nd = m\lambda\,代入可得
\Delta \nu = \frac{\nu}{m\mathcal{F}}\,,其中\nu\,是中心频率。
从而法布里-珀罗干涉仪的色分辨本领为\frac{\nu}{\Delta \nu} = m\mathcal{F}\,。一般干涉序m \sim 10^5\,,细度\mathcal{F}\,至少在10 \sim 10^2\,,从而干涉光谱仪的色分辨本领在106至107的量级以上。
干涉仪的另一个重要应用是制造波长计,波长计又分为动态波长计和静态波长计,前者包含活动组件可调节光程差,后者则采用光程差为倍数递增关系的多个迈克耳孙干涉仪或自由光谱范围为倍数递增关系的多个法布里-珀罗干涉仪组合而成。此外利用激光的外差干涉,结合法布里-珀罗干涉仪可以更精确地测量激光的频率或比较两束激光的频率高低,并通过声光调制和光纤延迟还可以测量出激光的线宽。
二十世纪六十年代末,随着射电望远镜接收器的性能和稳定性的提高,在全世界(以至地球轨道)范围内使望远镜相距很远的同一射电信号之间产生干涉成为可能,这被称为超长基线干涉(VLBI)。超长基线干涉不需要观测信号之间的物理连接,而是在信号数据本身嵌入被原子钟校准的时间信息,之后再将这些数据进行相关性计算。由于这些数据是在相隔很远的地点观测到的,等效基线能够达到非常之长。已经运行的超长基线干涉仪包括位于美国本土及海外领地的超长基线阵列(基线长度8611千米),以及遍布欧亚和非洲大陆的欧洲超长基线干涉网。这些干涉阵列平时都进行着独立的观测,但在一些特殊项目中可以实现同时性的观测,从而形成全球性的超长基线干涉。
1、本站所有文本、信息、视频文件等,仅代表本站观点或作者本人观点,请网友谨慎参考使用。
2、本站信息均为作者提供和网友推荐收集整理而来,仅供学习和研究使用。
3、对任何由于使用本站内容而引起的诉讼、纠纷,本站不承担任何责任。
4、如有侵犯你版权的,请来信(邮箱:baike52199@gmail.com)指出,核实后,本站将立即删除。