-
分子物理学 编辑
分子物理学(molecular physics)是研究分子结构、分子物理性 质和分子间相互作用的物理学分支。从微观的角度,研究分子的几何结构和分子的能级结构,分子间的相互作用,这是物质结构研究的重要组成部分;从宏观的角度,研究大量分子组成的系统所遵循的运动规律,这部分称为分子动理论。在上述理论研究基础上,研究气体、液体和固体的理化特性亦是分子物理学的主要内容。它与物理学的其他分支,如原子物理学、凝聚态物理学、天体物理学等以及化学都有密切的关系。
中文名:分子物理学
外文名:molecular physics
适用领域:凝聚态物理学
所属学科:天体物理
主要理论:分子动理论、分子热力学等。
总述
分子由原子组成,各原子通过化学亲和力或称化学键相互结合成分子,分子的几何结构、化学键与分子的化学、物理性质有直接的关系。分子的结构可通过多种途径进行研究,分子光谱测量方法是研究分子结构的重要和有效的手段。通过分子光谱的测量可给出分子的微观能级结构,进而给出分子的几何结构和分子间的相互作用力。与原子相比较,分子内部的运动形态要复杂得多,除与原子一样具有外围电子的绕核运动外,还有组成分子的各原子核间的振动以及所有原子核绕分子轴的转动,这就决定了分子的微观能级结构要比原子的复杂,因此分子光谱也就相当复杂。分子光谱的波长测量范围可覆盖从紫外线到微波、射频波段,不同波段的分子光谱代表不同能级间的跃迁:可见光和紫外线波段的光谱反映了分子电子态能级间的跃迁,形成光谱带系的结构;红外波段的光谱反映了分子振动态能级间的跃迁;远红外至微波波段则反映了分子转动态能级间的跃迁。
实验方法
分子光谱测量可采用各类光谱仪器,如光栅光谱仪或摄谱仪、傅里叶光谱仪、拉曼光谱仪等。激光问世后,各类激光光谱测量技术,结合分子束技术、质谱技术成为分子光谱研究的重要手段。分子光谱的测量可分成两大类:一类是频畴测量,即测量光谱强度随光频率(或光波长)的变化关系;一类是时畴测量,即测量光谱强度 随时间的变化关系。频畴测量可给出分子的光谱常数和能级参数、分子的势能函数、分子的解离能、分子间的力常数等,导出分子的几何结构(如分子的键角和键长)。高分辨分子光谱的测量可给出分子的精细结构和超精细结构、核自旋参数,还可研究分子在外电场和外磁场中的行为,给出分子的电磁参量(如分子的磁偶极矩和电偶极矩、电四极矩和极化率等)。时畴测量广泛应用于研究分子物理学中的超快速现象,采用超短脉冲激光可测 定激发态分子和瞬态分子的寿命,测定分子在光解离和化学反应过程中的动力学行为,揭示在皮秒、飞秒领域内物质内部的运动规律。除光谱研究外,X射线衍射仪、中子衍射仪、核磁共振谱仪和电子顺磁共振谱仪也可用来确定分子的结构。此外,光电子能谱测量技术也是研究分子物理性质的有力实验手段。
理论解释和计算
理论上量子力学是研究分子物理、分子化学键本质以及分子间相互作用的主要工具。1930年以来,量子力学在这些问题的理论解释上有很大进展。被称为分子的量子力学的量子化学,是近代理论化学最活跃的前沿研究之一。应用量子化学原理并配合计算机技术,直接计算分子的能级、状态波函数和势函数,以及其他物理性质,取得了显著成就。反过来,分子光谱测量和量子力学解释之间的相符合,亦是证实量子理论的重要依据。
分子运动论是研究大量分子的宏观运动规律,如理想气体运动规律、分子速度分布定律和动能均分定律等,还包括研究物质的热学性质和聚集状态、状态方程(体积、温度和压强之间的关系)、各种热力学函数、液体和固体的表面层现象和表面吸附、相平衡和相变,以及扩散、热传导和黏滞性等与分子输运有关的各种现象。这些现象和性质与大量分子的整体运动状态有关,因此在分子物理学的研究中还广泛地利用热力学定律和统计物理学的理论。
1、本站所有文本、信息、视频文件等,仅代表本站观点或作者本人观点,请网友谨慎参考使用。
2、本站信息均为作者提供和网友推荐收集整理而来,仅供学习和研究使用。
3、对任何由于使用本站内容而引起的诉讼、纠纷,本站不承担任何责任。
4、如有侵犯你版权的,请来信(邮箱:baike52199@gmail.com)指出,核实后,本站将立即删除。