-
水星 编辑
水星(英语:Mercury;拉丁语:Mercurius),因快速运动,欧洲古代称它为墨丘利(Mercury),意为古罗马神话中飞速奔跑的信使神。中国古称辰星,西汉《史记‧天官书》的作者司马迁从实际观测发现辰星呈灰色,与五行学说联系在一起,以黑色属水,将其命名为水星。水星是太阳系的八大行星中最小且最靠近太阳的行星。轨道周期是87.9691天,116天左右与地球会合一次,公转速度远远超过太阳系的其它行星。水星是表面昼夜温差最大的行星,大气层极为稀薄无法有效保存热量,白天时赤道地区温度可达437°C,夜间可降至-172°C。水星的轴倾斜是太阳系所有行星中最小的(大约1⁄30度),但有最大的轨道偏心率。水星在远日点的距离大约是在近日点的1.5倍。水星表面遍布环形山,与月球和其他卫星相似,其地质在数十亿年来都处于非活动状态。水星无四季变化,行星中仅有它与太阳轨道共振。每自转三圈的时间与绕太阳公转两圈的时间几乎相等。从太阳看水星,参照它的自转与公转,每两个水星年才一个太阳日。水星的轨道位于地球的内侧(与金星相同),所以它只能在晨昏之际与白天出现于天空中,而不会在子夜前后出现。从地球看水星的亮度有很大的变化,视星等从-2.48至7.25等,但是它与太阳的距角最大只有28.3°。在北半球,只能在凌晨或黄昏的曙暮光中看见水星。当大距出现于赤道以南的纬度时,在南半球的中纬度可以在完全黑暗的天空中看见水星。
中文名:水星
外文名:Mercury
别名:辰星
分类:行星、类地行星
质量:3.3011✕1023 kg
平均密度:5.427 g/cm³
直径:4880 km
表面温度:-190 至 428 ℃
逃逸速度:4.25 km/s
反照率:0.088(球面,0.142 几何)
视星等:-2.48 至 7.25 等
自转周期:58.65天
距地距离:150000000 km
半长轴:0.3871 天文单位
离心率:0.205630
公转周期:87.9691 日
平近点角:174.796 度
轨道倾角:7.00487 度
升交点经度:48.331 度
体积:6.083×10¹⁰ 立方千米
表面积:7.48×10⁷ 平方千米
会合周期:115.88 日
近日点幅角:29.124°
近日点:0.307499 天文单位
远日点:0.466697 天文单位
转轴倾角:0.034°
角直径:4.5"–13"
发现&命名
Mercury,1550年古德·波那提编辑的木刻集
水星环形山
1976年,国际天文学联合会开始为水星上的环形山命名。在已命名的310多个环形山的名称中,其中有21个环形山是以中国历史人物的名字命名的。比如,伯牙:传说是春秋时代的音乐家;蔡琰:东汉末女诗人;李白:唐代大诗人;白居易:唐代大诗人:董源:五代十国南唐画家;李清照:南宋女词人;姜夔:南宋音乐家;梁楷:南宋画家;关汉卿:元代戏曲家;马致远:元代戏曲家;赵孟頫:元代书画家;王蒙:元末画家;朱耷:清初画家;曹雪芹:清代文学家;鲁迅:中国近代文学家。 齐白石:现代画家;仇英:明代画家;韩干:唐代画家;杜甫:唐代诗人;文天祥:宋代诗人;萧照:宋代画家;银蛇(光斑)
运动&轨道
公转
近日点
在水星表面上的某些点,观测者可以看见太阳上升到半途时,会反转回去日落,然后再度日出;在所有的点上,这些都发生在同一个水星日。这是因为在近日点前大约4个地球日时,水星轨道的角速度,几乎与它的自转速度相同,所以太阳的视运动会停滞;在近日点时,水星公转的角速度超过水星自转的角速度。因此,对假设在水星上的观测者,会明显的看到太阳逆行。通过近日点4天之后,在这些点上观测到的太阳视运动又恢复正常了。
水星与地球内合(最靠近地球)的周期平均是116地球日,但是由于水星轨道的离心率,这个间隔从105日至129日不等。水星与地球的距离可以近到7730万千米,但在公元28622年之前不会接近至8000万千米以内,公元2679年为8210万千米,公元4487年为8200万千米。从地球可以看见它逆行的时间大约是在内合前后的8-15天,所以会有如此大范围差距变化,完全是因为它有着较大的离心率。
水星轨道
水星公转示意图

水星自转示意图
自转
1889年意大利天文学家乔凡尼·斯基亚帕雷利经过多年观测认为水星自转时间和公转时间都是88天。许多年以来,水星被认为是与太阳同步的潮汐锁定,在每一次的轨道公转中都以同一面朝向太阳,就像月球始终以同一面朝向地球。在1965年的雷达观测,美国天文学家才测量出水星自转的精确周期是58.646天,证明水星以3:2的自转轨道共振,每公转太阳二次时也自转三次;而水星轨道的高离心率使得此共振稳定 - 在近日点,太阳的潮汐力最强,太阳也平静(稳定)的出现于最靠近水星的天空。
起初,天文学家认为它被同步锁定的原因是,当水星在适合观测的位置上时,它几乎总是在3:2共振的相同位置上,因此呈现相同的面貌。这也是因为水星公转周期与地球会合周期一半的巧合,由于水星3:2的自旋轨道共振,一太阳日(太阳两次过中天的时间间隔)约176地球日。一恒星日(自转周期)则约59地球日。
模拟的研究显示水星轨道的离心率是混沌的,在数百万年的时间内会因为其它行星的摄动从接近0(圆形)至超过0.45之间变动。这被认为可以解释水星的3:2自旋轨道共振(而非更常见的1:1),因为这种状态在高离心率轨道的时期中是可能发生的。数值模拟显示未来长期轨道共振,与木星的交互作用会造成近日点距离的增加,在未来的50亿年内有1%的几率会与金星碰撞。
近日点进动
1859年,法国数学家和天文学家奥本·勒维耶(Urbain Jean Joseph Le Verrier)报告水星环绕太阳的轨道有着牛顿力学和现有已知的行星摄动不能完满解释的缓慢进动。他建议用“另一颗行星(或一系列更微小天体)位于比水星更靠近太阳的轨道上”来处理这些摄动(其它的解释包括太阳略微的扁平)。基于天王星的轨道受到扰动而发现了海王星的成功,使天文学家对这个解释充满了信心,并且这个假设的行星被命名为祝融星,但是始终未能发现这颗行星。
水星相对于地球的近日点进动是每世纪5600弧秒(1.5556度),或是相对于惯性ICFR每世纪574.10±0.65角秒;但牛顿力学考虑了来自其它行星所有的影响,预测的进动只有每世纪5557角秒(1.5436度)。在20世纪初期,爱因斯坦的广义相对论对观测到的进动提供了解释。这个效应非常小:水星近日点的相对论进动是每世纪42.98角秒,刚刚好是之前不足的值;然而,在经历1200万次的公转之后,它仍有一点点的过剩。其它行星也有非常类似的情形,但是影响小了很多:金星是每世纪8.62角秒,地球是3.84角秒,火星是1.35角秒,伊卡洛斯(1566 Icarus)是10.05角秒。
地面观测
内行星(水星、金星)距角示意图
像月球和金星一样,从地球上可以观察到水星的相位。它的“新月”出现于内合,“满月”出现于在外合。由于它相对的过度贴近太阳,因此从地球上是看不见水星呈现这两种相位。观察水星的最佳时候是在日出之前约50分钟,或日落后50分钟。
若用望远镜看水星,则可以选择水星在其轨道上处于太阳一侧或另一侧离太阳最远(大距)时并在日出前或日落后搜寻到它。天文历书会告诉你,这个所谓的“大距”究竟是在太阳的西边(右边)还是东边(左边)。若是在西边,则可以在清晨观测;若是在东边,则可以在黄昏观测。知道了日期,又知道了在太阳的哪一侧搜寻,还应该尽可能挑一个地平线没有东西阻隔的地点。搜寻水星要在离太阳升起或落下处大约一柞宽的位置。你将会看到一个小小的发出淡红色光的星星。
在其被太阳光淹没之前,你大概可以观测它2个星期。6个星期之后,它又会在相对的距角处重新出现。
在中国的大部分地区,一年通常只有2到3次最佳的水星观测机会。水星是昏星时,每年3月底到6月初,尤其是在5月中下旬,有机会达到比较大的高度,可以在傍晚西方天空中寻找。水星是晨星时,9月初到12月初,尤其是10月中下旬,有机会达到比较大的高度,可以在黎明时向东方寻找。值得注意的是,并不是说这两个时间段的水星一定会比较高,只有在此期间发生水星大距时,高度才会比较大,否则就只能静待下一年了。例如,2021年有两次大距都非常接近最佳观测日期。分别是5月17日的昏星和10月25日的晨星。
其实水星用肉眼观测并不是想象中那么难。要想观测水星,选择其大距时固然重要,而对于南北纬30,甚至20度以上的观测者,水星相对于太阳的赤纬极为重要。据传说,大天文学家哥白尼临终前曾叹他一生没有见过水星。
哥白尼为什么没见过水星,最重要的客观原因有两个:第一,近前后5000年,北半球相对于南半球,不适合观测水星,因为每当水星大距处于其远日点时,北半球观测者会发现水星的赤纬总是低于太阳赤纬,即使水星离太阳距角接近最大的28度,但水星几乎还是和太阳同升同落。反之水星到了近日点时,北半球观测者看到的水星却比太阳赤纬高。但近日点毕竟才18度的距角,所以水星还是难以观测。这种情况需要再过几千年水星近日点进动90度后才能改观。第二,地理纬度越高,内行星越难见。纬度高的地区,太阳的晨昏朦影时间很长,即日出前或者日落后很久,天空依然明亮,所以不利于观测水星,即使北半球来说水星每逢高于太阳赤纬的大距,亮度至少比织女星亮,但明亮的天空背景还是使水星不易观测。
在北半球如中国,想要观测水星,只要选对日期,天气良好的情况下还是很容易做到的。一年中观测水星的最佳月份是3月、4月、9月、10月,即春秋分前后。春秋分时黄道赤纬微分值最大,(黄道赤纬变化最大),太阳和水星在黄道上相同距角时,距离的赤纬也比其他黄道区域大。当水星赤纬大于太阳赤纬较多时,偏北的水星可以在太阳在地平线下很久而被观测到。经验是:春分时节在西方的双鱼、白羊座找,秋分时节在狮子、处女座找水星。水星相当的明亮,在淡蓝色的黎明和黄昏低空中发出不闪烁的黄色光芒。
通常通过双筒望远镜甚至直接用肉眼便可观察到水星,但它总是十分靠近太阳,在曙暮光中难以看到。Mike Harvey的行星寻找图表指出此时水星在天空中的位置(及其他行星的位置),再由“星光灿烂”这个天象程序作更多更细致的定制。
水星探测器
为了全面了解水星,截至2022年10月,人类已经向水星发射了三个探测器,分别是水手10号探测器、信使号水星探测器和贝比科隆博号(BepiColombo)水星探测器。
水手10号
水手10号,第一艘水星探测器
1974年水手10号拍摄的水星表面拼合照
信使号
信使号水星探测器在做发射前准备
信使号拍摄的第一张照片和最后一张照片
信使号撞击点
MESSENGER
MESSENGER

信使号探测器

信使号水星探测器
贝皮可伦坡号
贝皮可伦坡号
贝皮科伦布号
2023年,法国国家科学研究中心等机构的科学家发现了太阳系中可能普遍存在的极光机制。这一发现来自于水星探测器“贝皮科伦布号”首次飞越水星的数据。研究揭示了水星南部磁层的极光与地球和火星的极光相似,形成极光的过程也与地球、木星、土星和天王星上观察到的类似。
未来殖民地
在水星南北极的环形山是一个很有可能适合成为地球外人类殖民地的地方,因为那里的温度常年恒定(大约-200℃)。这是因为水星微弱的轴倾斜以及因为基本没有大气,所以从有日光照射的部分的热量很难携带至此,即使水星两极较为浅的环形山底部也总是黑暗的。适当的人类活动将能加热殖民地以达到一个舒适的温度,周围一个相比大部分地球区域来说较低的环境温度将能使散失的热量更易处理。
盐冰川
2023年11月,美国行星科学研究所(PSI)科研团队深入研究水星,认为在水星北极周围的拉迪特拉迪陨石坑和埃米内斯库陨石坑中,发现了盐冰川的痕迹,推测在水星炎热表面下,可能存在生命。
大气层
由于缺乏大气的包围,水星表面的赤道和两极之间有着陡峭的温度差,温度范围从100K至700K。日下点的温度在近日点时高达700K,而在远日点时只有550K;在行星夜晚的那一侧,平均温度是110K。阳光的强度范围是太阳常数(1,370W·m−2)的4.59和10.61倍。
虽然水星表面的温度在白天是非常的高,但观测的结果仍然强烈的支持冰(冻结的水)存在于水星。在极区深坑的底部从未被阳光直接照射过,温度依然维持在102K以下,远低于全球的平均温度。水冰强烈的反射了雷达,金石70米的望远镜和VLA在1990年代早期的观测,透漏了在接近极区有非常高的雷达反射斑点。虽然冰不是造成这些反射区域的可能原因,但天文学家相信冰是最有可能的。
在水星北极的永久阴暗坑洞内,隐藏着大量水冰(黄色)
水星北极点雷达影像
在太阳的强烈辐射轰击下,水星大气被向后压缩延伸开去,在背阳处形成一个“尾巴”,就像一颗巨大的彗星。然而更诡异的一点是,水星事实上还在不断的损失其大气气体成分。组成水星大气的原子不断的被遗失到太空之中,由于钾或钠原子在一个水星日(一个水星日——在其近日点一日时间的一半)上大约有3小时的平均“寿命”。
因此,正如所罗门博士指出的那样“你需要不断的进行补充方能维持大气层的存在。”科学家们认为水星的补充方式是捕获太阳辐射的粒子,以及被微型陨石撞击后溅起的尘埃颗粒。散失的大气不断地被一些机制所替换,如被行星引力场俘获的火山蒸汽以及两极的冰冠的除气作用。
表层地理
信使号MLA仪器绘制的水星北半球地形图
反照率特征指使用不同领域的望远镜观测,明显的有不同反照率的地点。水星拥有山脊(有时也称为皱脊),像月球的高地、山脉(mountains)、平原(Planitiae)、悬崖(rupes)和谷地(valleys)。水星在46亿年前形成时,曾经经历过彗星和小行星短暂的轮番轰击,在38亿年前结束,可能是独立发生的后期重轰炸期。在这些剧烈形成陨石坑的期间,由于缺乏大气层来减缓撞击,行星表面整个都被陨石坑覆盖着。在这个期间,行星有着火山的活动,像是卡洛里盆地等盆地都被来自行星内部的岩浆覆盖着,形成如同在月球上发现的海一样的平原。
水星地形图
信使号于2008年10月28日飞越水星,让研究人员获得更多鉴别水星表面浑沌地形的资料。水星的表面比火星和月球更为复杂,它包含了大量在两者上都值得注意的类似地质,像是海和平原等。
平原
水星有两种地质显著不同的平原。在坑穴之间,起伏平缓、多丘陵的平原,是水星表面可见最古老的地区,早于猛烈的火山口地形。这些埋藏着陨石坑的平原似乎已湮灭许多较早的陨石坑,并且缺乏直径在30千米以下,以及更小的陨石坑。还不清楚它们是起源于火山还是撞击,这些埋藏着陨石坑的平原大致是均匀的分布在整个行星的表面。
卡洛里斯撞击盆地的对跖点的所谓“怪异地形”
行星表面一个不寻常的特征是众多的压缩皱褶或峭壁,在平原表面交错着。随着行星内部的冷却,它可能会略为收缩,并且表面开始变型,造成了这些特征。凹陷也在其它地形,像是坑穴和平滑的平原,顶部看见,显示这些皱褶是在如今才形成的。水星的表面也会被太阳扭曲——太阳对水星的潮汐力比月球对地球的强17倍。信使号在水星北极地区发现了水星上最大的火山平原开阔区之一,覆盖面积约400万平方千米,深度几千米。它帮助确认了火山活动在水星历史的大多数时间里对于塑造其地壳起到了关键作用。
环形山
水星的表面很像月球,满布着环形山、大平原、盆地、辐射纹和断崖。于是,水星上的环形山和月球上的环形山一样,也进行了命名。水星表面上环形山的名字都是以文学艺术家的名字来命名的,没有科学家,这是因为月面环形山大都用科学家的名字命名了。水星表面被命名的环形山直径都在20千米以上,而且都位于水星的西半球这些名人的大名将永远与日月争辉,纪念他们为人类作出的贡献。
阿比丁(Abedin)环形山内部的中央峰
内部构造
水星是太阳系内与地球相似的4颗类地行星之一,有着与地球一样的岩石个体。它在赤道的半径为2439.7千米,是太阳系中最小的行星,水星甚至比一些巨大的天然卫星,比如木卫三和土卫六还要小,虽然质量更大一些。水星由大约70%的金属和30%的硅酸盐材料组成,水星的密度为5.427g/cm3,在太阳系中是第二高的,仅次于地球的5.515g/cm3。如果不考虑重力压缩对物质密度的影响,水星物质的密度将是最高的。未经重力压缩的水星物质密度是5.3g/cm3,相较之下地球物质只有4.4g/cm3。
信使号MASCS光谱仪扫描的水星表面伪彩色图
水星表面
水星内部结构与磁场示意图
从水星的密度可以推测其内部结构的详细资料。地球的高密度,特别是核心的高密度是由引力压缩所导致的。水星是如此的小,因此它的内部不会被强力的挤压。所以它要有如此高的密度,它的核心必然很大。
撞击盆地及坑穴
显示北极地区的最高温度区域的假色图
卡洛里斯盆地透视图(红色为高地,蓝色为低地)
卡洛里斯盆地火山平原中Munch,Sander,Poe环形山

卡洛里斯盆地,太阳系中最大的撞击盆地之一
整体而言,在已有的水星影像中大约已经发现15个撞击盆地。一个显著的盆地是400千米宽、有着多重环的托尔斯泰盆地,它的喷发物覆盖造成的平原,从山脊和地板延伸达500千米。直径625千米的贝多芬盆地有着相似规模的喷发覆盖物。和月球一样,水星的表面也有遭受太空风化过程的影响,包括太阳风和微陨石撞击的影响。
磁场和磁层
水星相对磁场强度示意图
水星磁场的强度足以偏转围绕着该行星的太阳风,创造出磁层。水星的磁层虽然很小,但已足以将地球包含在内,也强到可以将太阳风的等离子拘束在内,对行星表面的太空风化产生贡献。水手10号太空船的观测在水星夜半侧的磁层内部侦测到低能量的等离子,在磁尾也侦测到高能量的微粒爆炸,这些都显示了水星磁层的动力学性质。
在2008年10月6日的第二次飞掠水星,信使号发现水星的磁场有甚高频的“渗漏”。太空船遭遇到磁性的“龙卷风”,缠绕扭曲的磁场与行星磁场联结并深入行星际空间,宽度达到800千米,或是行星半径的1/3。这个龙卷风形成时夹带着太阳风的磁场联结到水星的磁场。随着太阳风刮过水星的磁场,这些联结的磁场会被携走和扭曲成类似漩涡状的结构。这些扭曲的磁通量管,技术上称为通量传输事件,形成行星磁盾中开放的窗口,太阳风可以长驱直入并直接撞击到水星的表面。
这种联结行星际和行星磁场的过程称为磁重联,在宇宙中是很普遍的。它也发生在地球的磁场,通常也会产生磁场的龙卷风。信使号的观测显示重联结的速率在水星高出了10倍。但依水星和太阳的距离,信使号观测到的重联结仅有1/3。
温度
水星是表面昼夜温差最大的行星,水星表面的赤道和两极之间有着陡峭的温度差,温度范围从100K至700K。日下点的温度在近日点时高达700K,而在远日点时只有550K;在行星夜晚的那一侧,平均温度是110K。阳光的强度范围是太阳常数(1,370W·m−2)的4.59和10.61倍;同时水星大气层极为稀薄无法有效保存热量,白天时赤道地区温度可达432°C,夜间可降至-172°C。在从未被阳光直接照射过的南北极环形山深坑底部,温度常年维持在102K以下,远低于水星的平均温度。虽然水星表面的温度在白天是非常的高,但信使号探测器的雷达观测结果强烈支持水星北极区域存在大量水冰(10000亿吨)。
水星凌日
水星凌日过程示意图
水星凌日,中央靠左的黑点为水星,中央靠上的为太阳黑子
水星大距
2022年水星共有7次大距,其中,西大距有3次,东大距有4次。2022年1月7日,水星东大距;10月9日,水星西大距;12月21日,水星将迎东大距,这是水星在2022年的最后一次大距。
1、本站所有文本、信息、视频文件等,仅代表本站观点或作者本人观点,请网友谨慎参考使用。
2、本站信息均为作者提供和网友推荐收集整理而来,仅供学习和研究使用。
3、对任何由于使用本站内容而引起的诉讼、纠纷,本站不承担任何责任。
4、如有侵犯你版权的,请来信(邮箱:baike52199@gmail.com)指出,核实后,本站将立即删除。