-
β衰变 编辑
原子核自发地放射出β粒子或俘获一个轨道电子而发生的转变。放出电子的衰变过程称为β-衰变;放出正电子的衰变过程称为β+衰变。在β衰变中,原子核的质量数不变,只是电荷数改变了一个单位。原子核从核外电子壳层中俘获一个轨道电子的衰变过程称为轨道电子俘获。俘获K层电子叫K俘获,俘获L层的叫L俘获,其余类推。通常,K俘获的几率最大。
中文名:β衰变
外文名:β-decay
所属学科:物理
提出者:泡利
提出时间:1930年
适用领域:原子物理
放出正电子的称为“正β衰变”,放出电子的称为“负β衰变”。在正β衰变中,核内的一个质子转变成中子,同时释放一个正电子和一个中微子;在负β衰变中,核内的一个中子转变为质子,同时释放一个电子和一个反中微子。此外电子俘获也是β衰变的一种,称为电子俘获β衰变。
β衰变中,原子核发生下列三种类型的变化:
X→Y+e-+-ve(β-衰变)
X→Y+e++ve(β+衰变)
X+e-→Y+ve(EC)
式中X和Y分别代表母核和子核;A和Z是母核质量数和电荷数;e-、e+为电子和正电子,-ve、ve为反电子中微子和电子中微子。
三种类型释放的衰变能分别为
Qβ-=(mx-mY)c^2
Qβ+=(mx-mY-2me)c^2,
QEC=(mx-mY)c^2-wi
其中mx和my为母核原子和子核原子的静止质量,me为电子的静止质量,Wi为轨道电子结合能,с为光速。
β衰变可俘获K层电子,称为K俘获;也可以俘获L层电子,称为L俘获。轨道电子俘获所形成的子核原子于缺少一个内层电子而处于激发态,可通过外层电子跃迁发射X射线标识谱或发射俄歇电子而退激。最初以为β-连衰变仅放出电子,实际测量发现,放出的电子能量从零到Qβ-连续分布,曾困惑物理学家多年。
1930年W.E.泡利提出β-衰变放出e-的同时还放出一个静质量为零、自旋为1/2的中性粒子,衰变能为电子和该粒子分享,该粒子后来被称为中微子,1952年以后被实验确凿证实。
β衰变属于弱相互作用。1956年李政道和杨振宁提出弱相互作用过程宇称不守恒,第二年吴健雄等人利用极化核60Co的β衰变实验首次证实了宇称不守恒。这一发现不仅促进了β衰变本身的研究,也促进了粒子物理的发展。
2.新核的质量数不变,电荷数增加1,新核在元素周期表中的位置要向后移一位。β衰变中放出的电子能量是连续分布的,但对每一种衰变方式有一个最大的限度,可达几兆电子伏特以上,这部分能量由中微子带走。
1957年,吴健雄博士用钴-60的β衰变实验证明了在弱相互作用中的宇称不守恒。
β衰变
双重β衰变,亦作ββ衰变,是β衰变的一个特例,包含原子核内两个单位的转变,只发生于特定的原子核。双重β衰变正常来说会放出两对中微子,但现时有科学家猜想是否有可能发现不放出中微子的双重β衰变,称为“无中微子双β衰变”。物理学者尚未能验证此程序存在,推长半衰期下限至10年。
β跃迁几率
根据量子力学的微扰论,费密理论给出单位时间发射动量在p到p+dp间β粒子的几率为,(1)
β衰变
式中g是弱相互作用常数,Mif是跃迁矩阵元,啚是普朗克常数h除以2π,F(Z,E)是库仑改正因子,它描述核的库仑场对发射β粒子的影响,是子核电荷数Z和β粒子能量E的函数。跃迁几率的大小主要由跃迁矩阵元|Mif|的大小决定。
β跃迁分类
根据跃迁矩阵元的大小,可将β跃迁分为容许跃迁、一级禁戒跃迁、二级禁戒跃迁等。级次越高,跃迁几率越小;相邻两级间,几率可以相差几个数量级。
费密理论给出β衰变对母核同子核间的自旋和宇称变化的选择定则:对于允许跃迁,自旋变化|ΔI|=0,1,宇称变化Δπ=+1;对于一级禁戒跃迁,|ΔI|=0,1,2,Δπ=-1;对于二级以上的如n级禁戒跃迁,|ΔI|=n,n+1,Δπ=(-1)。
衰变中的宇称不守恒
在β衰变的研究中的一个重要的突破是1956年李政道和杨振宁提出的弱相互作用中的宇称不守恒,第二年吴健雄等人利用极化核钴的β衰变实验首次证实了宇称不守恒,这一发现不仅促进了β衰变本身的研究,也促进了粒子物理学的发展。
1、本站所有文本、信息、视频文件等,仅代表本站观点或作者本人观点,请网友谨慎参考使用。
2、本站信息均为作者提供和网友推荐收集整理而来,仅供学习和研究使用。
3、对任何由于使用本站内容而引起的诉讼、纠纷,本站不承担任何责任。
4、如有侵犯你版权的,请来信(邮箱:baike52199@gmail.com)指出,核实后,本站将立即删除。