-
光电子能谱 编辑
光电子能谱(photoelectron spectroscopy),利用光电效应的原理测量单色辐射从样品上打出来的光电子的动能(并由此测定其结合能)、光电子强度和这些电子的角分布,并应用这些信息来研究原子、分子、凝聚相,尤其是固体表面的电子结构的技术。对固体而言,光电子能谱是一项表面灵敏的技术。虽然入射光子能穿入固体的深部,但只有固体表面下20~30埃的一薄层中的光电子能逃逸出来(光子的非弹性散射平均自由程比电子的大10~10倍), 因此光电子反映的是固体表面的信息。
中文名:光电子能谱
外文名:photoelectron spectroscopy
基本原理:利用爱因斯坦的光电效应定律
用途:表面分析
光电子能谱
hν=Ek+Eb
式中hν为入射光子能量,Ek是被入射光子所击出的电子能量,Eb为该电子的电离能,或称为结合能。光电离作用要求一个确定的最小光子能量,称为临阈光子能量hν0。对固体样品,又常用功函数这个术语,记做φ。
对能量hν显著超过临阈光子能量hν0的光子,它具有电离不同电离能(只要Eb<hν)的各种电子的能力。一个光子对一个电子的电离活动是分别进行的。一个光子,也许击出一个束缚很松的电子并将高动能传递给它;而另一个同样能量的光子,也许电离一个束缚的较紧密的电子并产生一个动能较低的光电子。因此,光电离作用,即使使用固定频率的激发源,也会产生多色的,即多能量的光致发射。因为被电子占有的能级是量子化的,所以光电子有一个动能分布n(E),由一系列分离的能带组成。这个事实,实质上反映了样品的电子结构是“壳层”式的结构。用分析光电子动能的方法,从实验上测定n(E)就是光电子能谱(PES)。将n(E)对E作图,成为光电子能谱图。那样简单的光电子谱图,对电子结构的轨道模型提供了最直接的,因而也是最令人信服的证据。严格的讲,光电子能谱应该用电离体系M+的多电子态方法来解释,比用中性体系M的已占单电子态(轨道)为好。
X射线光电子能谱法:用来(定性)分析原子在化合物中的价态,和化合形态。仪器简单,光谱解析简单。
紫外光电子能谱法:分析价层轨道里的电子的能量和作用。可以获得很多关于分子的稳定性,反应性等信息。但是由于电子的跃迁和振动能级有作用,和分子对称性相关极为紧密。图谱解析复杂。仪器要求较高。
Auger电子能谱法:属于二次电子能谱法。多用于对固体,或凝聚态物质进行元素和价态的分析。图谱简单,仪器要求较高。常用来和X射线光电子能谱,荧光光谱,互补联合使用。
光电子能谱
(2)样品处理部分:包括有三个真空室,第一个真空室用于进出样品,第二个起真空缓冲作用,并在其内部作样品的制备和处理,样品在第三个真空室里被X 射线照射得到光电子。
(3)X射线源:热灯丝发射出电子,经电场加速,轰击阳极靶(通常为Al 或Mg),发出X 射线(Al 的特征谱线为1486.6ev,Mg 的特征谱线为1253.6ev),这样的X 射线是由多种频率的X 射线叠加而成的。实验中常常使用石英晶体单色器,将得到的X 射线单色化。
(4)电子能量分析器:作用是测量由样品表面发射出来的能量分布,所得光电子谱是一
幅电子流强度相对于动能的图。
(5)检测器
历史上,光电子能谱最初是由瑞典Uppsala大学的K.Siegbahn及其合作者经过约20年的努力而建立起来的。由于它在化学领域的广泛应用,常被称为化学分析用电子能谱(ESCA),但是,因为最初的光源采用了铝、镁等的特性软X射线,此方法逐渐被普遍称为X射线光电子能谱(XPS)。另外,伦敦帝国学院的D.W.Turner等人在1962年创制了使用He I共振线作为真空紫外光源的光电子能谱仪,在分析分子内价电子的状态方面获得了巨大成功,在固体价带的研究中,此方的应用领域正逐步扩大。与X射线光电子能谱相对照,此方法称为紫外光电子能谱(UPS),以示区别。
实验方法和技术
(2) CFS模式:固定终态谱(Constant Final-state Spectra)实验,即用光子能量扫描而恒定检测某一终态动能的光电子谱,可以用来测量界面形成过程中的表面能带结构和能带弯曲。
(3) CIS模式:固定初态谱(Constant Initial-state Spectra)实验,即选择并固定使芯能级到空表面态跃迁最强的初态能量,将光子能量和检测光电子的动能做同步扫描来研究空表面态。
(2) LEED:用于测定材料表面的有序性。
(3) SRPES:以同步辐射光为光电子能谱激发源测定材料表面的电子结构。
(1) 测定在各个被占据轨道上电子电离所需要的能量,为分子轨道理论提供实验依据。
(2) 研究固体表面组成和结构a. 表面的化学状态,包括元素的种类和含量,化学价态和化学键的形成等;
b.表面结构,包括宏观和表面的形貌,物相分布,元素分布及微观的原子表面排列等;
c. 表面电子态,涉及表面的电子云分布和能级结构。
1、本站所有文本、信息、视频文件等,仅代表本站观点或作者本人观点,请网友谨慎参考使用。
2、本站信息均为作者提供和网友推荐收集整理而来,仅供学习和研究使用。
3、对任何由于使用本站内容而引起的诉讼、纠纷,本站不承担任何责任。
4、如有侵犯你版权的,请来信(邮箱:baike52199@gmail.com)指出,核实后,本站将立即删除。