-
谢峰 编辑
谢峰,2006年毕业于香港中文大学,获得博士学位。现任上海交通大学数学科学学院教授,研究兴趣为流体力学中偏微分方程。
中文名:谢峰
国籍:中国
毕业院校:香港中文大学
职业:教师
主要成就:德国洪堡学者上海市科委青年科技启明星
教育背景
2002/08-2006/05 香港中文大学数学博士
1999/09-2002/06 武汉大学数学硕士
1995/09-1999/06 武汉大学数学学士
工作经历
2017/01- 上海交通大学教授
2017/09-2018/08 美国布朗大学访问学者
2015/06-2015/08 德国维尔茨堡大学洪堡研究员
2011/01-2012/02 德国斯图加特大学洪堡研究员
2010/01-2016/12 上海交通大学副教授
2008/07-2009/12 上海交通大学助理教授
2006/08-2008/07 北京应用物理与计算数学研究所(IAPCM)博士后
(1) Liu Chengjie, Wang Dehua, Xie Feng, Yang Tong, Magnetic effects on the solvability of 2D MHD boundary layer equations without resistivity in Sobolev spaces. Jour. Funct. Anal. 279 (7) 108637 45pp (2020)
(2) Guo Liang, Li Fucai, Xie Feng, Asymptotic limits of the isentropic compressible viscous magnetohydrodynamic equations with Navier-slip boundary conditions. Jour. Diff. Equ. 267 6910-6957 (2019)
(3) Liu Chengjie, Xie Feng, Yang Tong, Justification of Prandtl Ansatz for MHD boundary layer. SIAM Jour. Math. Anal. 51(3) 2748-2791 (2019)
(4) Liu Chengjie, Xie Feng, Yang Tong, MHD Boundary Layers in Sobolev Spaces without monotocity. I. Well-posedness Theory. Comm Pure Appl. Math. 72(1) 63-121 (2019)
(5) Xie Feng, Yang Tong, Lifespan of Solution to MHD Boundary Layer Equations with Analytic Perturbation of General Shear Flow, Acta Mathematicae Applicatae Sinica 35(1) 1-21 (2019)
(6) Xie Feng, Yang Tong, Global-in-time Stability of 2D MHD boundary Layer in the Prandtl-Hartmann Regime. SIAM Jour. Math. Anal. 50(6) 5749--5760 (2018)
(7) Liu Chengjie, Xie Feng, Yang Tong, A note on the ill-posedness of shear flow for the MHD boundary layer equations, Science China Mathematics 61(11), 2065-2078 (2018)
(8) Wang Wenjun, Xie Feng, Yang Xiongfeng, Decay Rates of Solutions to a P1-Approximation Model Arising from Radiation Hydrodynamics. Jour. Diff. Equ. 264 2936-2969 (2018)
(9) Xie Feng, Klingenberg Christian, A limit problem for three-dimensional ideal compressible radiation magneto-hydrodynamics. Anal. Appl. 16(1) 85-102 (2018)
(10) Wang Jing, Xie Feng, On the Rayleigh-Taylor instability for the compressible non-isentropic inviscid fluids with a free interface. Discrete Contin. Dyn. Syst. Ser. B 21(8) 2767–2784 (2016)
(11) Jiang Song, Li Fu-Cai, Xie Feng, Nonrelativistic limit of the compressible Navier-Stokes-Fourier-P1 approximation model arising in radiation hydrodynamics SIAM Jour. Math. Anal. 47(5)3726–3746 (2015)
(12) Wang Jing, Xie Feng, Zero dissipation limit and stability of boundary layers for the heat conductive Boussinesq equations in a bounded domain. Proc. Roy. Soc. Edinburgh Sect. A 145(3) 611–637 (2015)
(13) Wang Ya-Guang, Xie Feng, Yang Tong,Local well-posedness of Prandtl equations for compressible flow in two space variables.SIAM Jour. Math. Anal. 47(1) 321–346 (2015)
(14) Rohde Christian, Wang Wenjun, Xie Feng, Hyperbolic-Hyperbolic Relaxation Limit for a 1D Compressible Radiation Hydrodynamics Model: Superposition of Rarefaction and Contact Waves,Comm. Pure Appl. Anal.12(5) 2145-2171(2013)
(15) Rohde Christian, Xie Feng, Decay Rates to Viscous Contact Waves for a 1D Compressible Radiation Hydrodynamics Model. Math. Models Meth. Appl. Sci.23(03) 441-469 (2013)
(16) Xie Feng, Nonlinear Stability of Combination of Viscous Contact Wave with Rarefaction Waves for a 1D Radiation Hydrodynamics Model. Discrete Contin. Dyn. Syst. Ser. B17(3)1075-1100(2012)
(17) Rohde Christian, Xie Feng, Global Existence and Blowup Phenomenon for a 1D Radiation Hydrodynamics Model Problem. Math. Meth. Appl. Sci. 35(5)564-573 (2012)
(18) Wang Jing, Xie Feng, Asymptotic Stability of Viscous Contact Wave for the 1D Radiation Hydrodynamics System. Jour. Diff. Equ. 251(4/5) 1030-1055 (2011)
(19) Wang Jing, Xie Feng, Singular Limit to Strong Contact Discontinuity for a 1D Compressible Radiation Hydrodynamics Model. SIAM Jour. Math. Anal. 43(3) 1189-1204 (2011)
(20) Wang Jing, Xie Feng, Asymptotic Stability of Viscous Contact Wave for the One Dimensional Compressible Viscous Gas with Radiation. Non. Anal. 74(12) 4138-4151 (2011)
(21) Wang Wenjun, Xie Feng,The Initial Value Problem for a Multi-dimensional Radiation Hydrodynamics Model with Viscosity. Math. Meth. Appl. Sci. 34(7) 776-791 (2011)
(22) Wang Jing, Xie Feng, Characteristic boundary Layers for parabolic perturbations of quasi-linear hyperbolic problems. Non. Anal. 73 2504-2523 (2010)
(23) Zhang Jianwen, Jiang Song, Xie Feng, Global weak solutions of an initial boundary value problem for screw pinch in plasms physics. Math. Models Meth. Appl. Sci. 19(6) 833-875 (2009)
(24) Jiang Song, Xie Feng, Zhang Jianwen, A global existence result in radiation hydrodynamics, Industrial and Applied Mathematics in China, Series in Contemporary Applied Mathematics. High Edu. Press and World Scientific. Beijing, Singapore (2009)
(25) Guo Zhenhua, Jiang Song, Xie Feng, Global weak solutions and asymptotic behavior to 1D compressible Navier-Stokes equations with degenerate viscosity coefficient and discontinuities initial density. Asym. Anal. 60 101-123 (2008)
(26) Zhang Jianwen, Xie Feng, Global solution for a one-dimensional model problem in thermally radiation magneto-hydrodynamics. Jour. Diff. Equ. 245(7) 1853-1882 (2008)
(27) Wang Jing, Xie Feng, Global existence of strong solution to Cauchy problem for 1D radiative gases. Jour. Math. Anal. Appl. 346(1) 314-326 (2008)
(28) Xie Feng, Wang Chunpeng, Transonic shock wave in an infinite nozzle asymptotically converging to a cylinder. Jour. Diff. Equ. 242(1) 86-120 (2007)
(29) Xie Feng, Transonic shock waves in unbounded domain. Thesis (Ph.D.)–The Chinese University of Hong Kong (Hong Kong). 2006. 80 pp. ISBN: 978-0542-96710-8 (2006)
(30) Xie Feng, L^p estimates of solutions of Cauchy problem for viscous shallow water equations,Jour. Math. 22(1) 21-26 (2002)
Papers published in refereed proceedings:
(31) Wang Jing, Xie Feng, Asymptotic Stability of Viscous Contact Wave for the 1D Radiation Hydrodynamics System. Proceedings of the 13th International Conference on Hyperbolic Problems, Theory, Numerics and Application June 15-19, 2010.
研究项目
NSFC (2009/01-2011/12; 2012/01-2015/12; 2016/01-2019/12 )
NSFC (重点项目)(2019/01-2023/12 参加)
上海市科委青年科技启明星(2012)
Plenary Speaker at ICCM (2019)
1、本站所有文本、信息、视频文件等,仅代表本站观点或作者本人观点,请网友谨慎参考使用。
2、本站信息均为作者提供和网友推荐收集整理而来,仅供学习和研究使用。
3、对任何由于使用本站内容而引起的诉讼、纠纷,本站不承担任何责任。
4、如有侵犯你版权的,请来信(邮箱:baike52199@gmail.com)指出,核实后,本站将立即删除。