-
欧耀彬 编辑
欧耀彬,香港中文大学数学科学研究所博士,中国人民大学数学学院教授、博士生导师,中国人民大学杰出学者青年学者A岗,入选教育部“新世纪优秀人才支持计划”。
中文名:欧耀彬
毕业院校:香港中文大学
职业:教育科研工作者
主要成就:中国人民大学杰出学者青年学者A岗(2017)教育部“新世纪优秀人才支持计划”(2012)
教育经历
欧耀彬教授
2001.9-2004.6 中山大学数学与计算科学学院,硕士
1997.9-2001.6 中山大学数学与计算科学学院,本科
工作经历
2018.6- 中国人民大学数学学院
2013.2- 2018.6 中国人民大学信息学院
2010.9-2011.9 西班牙巴斯克应用数学中心,博士后
2010.7-2013.1 电子科技大学数学科学学院
2008.9-2010.7 北京应用物理与计算数学研究所,博士后
论文代表作:
☆ Yaobin Ou, Low Mach and low Froude number limit for vacuum free boundary problem of all-time classical solutions of one-dimensional compressible Navier-Stokes equations. SIAM J. Math. Anal. 53 (2021), no. 3, 3265–3305.
☆ Yaobin Ou, Lu Yang, Incompressible limit of non-isentropic compressible magnetohydrodynamic equations with zero magnetic diffusivity in bounded domains. Nonlinear Anal. Real World Appl. 49 (2019), 1–23.
☆ Yaobin Ou, Pan Shi, Peter Wittwer, Large time behaviors of strong solutions to magnetohydrodynamic equations with free boundary and degenerate viscosity. J. Math. Phys. 59 (2018), no. 8, 081510, 34 pp.
☆ Yaobin Ou, Global classical solutions to the 1-D vacuum free boundary problem for full compressible Navier-Stokes equations with large data. J. Math. Phys. 58 (2017), no. 1, 011502, 21 pp.
☆ Dandan Ren, Yaobin Ou*, Incompressible limit of all-time solutions to 3-D full Navier-Stokes equations for perfect gas with well-prepared initial condition. Z. Angew. Math. Phys. 67 (2016), no. 4, Art. 103, 27 pp.
☆ Dandan Ren, Yaobin Ou, Incompressible limit and stability of all-time solutions to 3-D full Navier-Stokes equations for perfect gases. Sci. China Math. 59 (2016), no. 7, 1395–1416. ☆ Changsheng Dou, Song Jiang, Yaobin Ou*, Low Mach number limit of full Navier-Stokes equations in a 3D bounded domain, Journal of Differential Equations,258 (2015) 379–398.
☆ Yaobin Ou, Huihui Zeng, Global strong solutions to the vacuum free boundary problem for compressible Navier–Stokes equations with degenerate viscosity and gravity force. Journal of Differential Equations 259 (2015) 6803–6829.
☆ Yaobin Ou, Peicheng Zhu. The Vanishing viscosity method for the sensitivity analysis of an optimal control problem of conservation laws in the presence of shocks, Nonlinear Analysis: Real World Applications,14 (2013), 1947-1974.
☆ Song Jiang and Yaobin Ou. Incompressible limit of the non-isentropic Navier–Stokes equations with well-prepared initial data in three-dimensional bounded domains, Journal de Mathématiques Pures et Appliquées, 96 (2011), 1-28
☆ Yaobin Ou and Peicheng Zhu. Spherically symmetric solutions to a model for phase transitions driven by configurational forces, Journal of Mathematical Physics, 52 (2011), Issue 9, 093708.
☆ Yaobin Ou. Low Mach limit of viscous polytropic fluid flows, Journal of Differential Equations, 251 (2011), 2037-2065.
☆ J. Fan, S. Jiang, Y. Ou*, A blow-up criterion for compressible viscous heat-conductive flows, ANIHP. - Anal. non lineaire 27 (2010) 337-350.
☆ Yaobin Ou. Incompressible limits of the Navier-Stokes equations for all time. J. Differential Equations, 247 (2009), 3295-3314
☆ Yaobin Ou. Low Mach number limit for the non-isentropic Navier-Stokes equations, J. Differential Equations, 246 (2009), 4441-4465.
中国人民大学优秀本科毕业论文(设计)优秀指导教师(2020)
中国人民大学杰出学者青年学者A岗(2017)
教育部“新世纪优秀人才支持计划”(2012)
电子科技大学“百人计划”(2011)
1、本站所有文本、信息、视频文件等,仅代表本站观点或作者本人观点,请网友谨慎参考使用。
2、本站信息均为作者提供和网友推荐收集整理而来,仅供学习和研究使用。
3、对任何由于使用本站内容而引起的诉讼、纠纷,本站不承担任何责任。
4、如有侵犯你版权的,请来信(邮箱:baike52199@gmail.com)指出,核实后,本站将立即删除。