-
单射 编辑
设f是由集合A到集合B的映射,如果所有x,y∈A,且x≠y,都有f(x)≠f(y),则称f为由A到B的单射。在数学里,单射函数为一函数,其将不同的引数连接至不同的值上。更精确地说,函数f被称为是单射时,对每一值域内的y,存在至多一个定义域内的x使得f(x) = y。另一种说法为,f为单射,当f(a) = f(b),则a = b(若a≠b,则f(a)≠f(b)),其中a、b属于定义域。单射在某些书中也叫入射,可理解成“原不同则像不同”。
函数f : R → R,其定义为f(x) = 2x + 1,是单射的。
函数g : R → R,其定义为g(x) = x^2,不是单射的,因为g(1) = 1 = g(−1)。但若将g的定义域限在非负数内,则g是单射的。
指数函数exp:R → R+:x → e^x(e的x次方)是单射的。
自然对数函数ln:(0,+∞) → R:x → ln x是单射的。
图示
更一般地说,当X和Y都是实数线 R',则单射函数f : R → R为一绝不会与任一水平线相交超过一点的图。
注意,g不一定是一f的完全反函数,因为其他顺序的复合f o g不一定是在X上的恒等函数。
事实上,将一单射函数f : X → Y变成一双射函数,只需要将其陪域Y替换成其值域J = f(X)就行了。亦即,令g : X → J,使其对所以X内的x,g(x) = f(x);如此g便为单射的了。确实,f可以分解成inclJ,Yog,其中inclJ,Y来由J至Y的内含映射。
若g o f为单射的,则f为单射的(但g不必然要是)。
f : X → Y是单射的当且仅当给定两函数g、h : W → X会使得f o g = f o h时,则g = h。
若f : X → Y为单射的且A为X的子集,则f −1(f(A)) = A。所以,A可以从其值域f(A)找回。
若f : X → Y是单射的且A和B皆为X的子集,则f(A ∩ B) = f(A) ∩ f(B)。
任一函数 h : W → Y 皆可分解为 h = f o g 其中 f 是单射而 g 是满射。此分解至多差一个自然同构, f 可以设想为从 h(W) 到 Y 的内含映射。
若 f : X → Y 是单射,则在基数的意义下 Y 的元素数量不少于 X。
若 X 与 Y 皆为有限集,则 f : X → Y 是单射当且仅当它是满射。
内含映射总是单射。
1、本站所有文本、信息、视频文件等,仅代表本站观点或作者本人观点,请网友谨慎参考使用。
2、本站信息均为作者提供和网友推荐收集整理而来,仅供学习和研究使用。
3、对任何由于使用本站内容而引起的诉讼、纠纷,本站不承担任何责任。
4、如有侵犯你版权的,请来信(邮箱:baike52199@gmail.com)指出,核实后,本站将立即删除。