密码学 编辑

密码学密码学

密码学是研究编制密码和破译密码的技术科学。研究密码变化的客观规律,应用于编制密码以保守通信秘密的,称为编码学;应用于破译密码以获取通信情报的,称为破译学,总称密码学。电报最早是由美国的摩尔斯在1844年发明的,故也被叫做摩尔斯电码。它由两种基本信号和不同的间隔时间组成:短促的点信号 .,读 的 (Di);保持一定时间的长信号—,读答 (Da)。间隔时间:滴,1t;答,3t;滴答间,1t;字母间,3t;字间,5t。

基本简介

编辑
密码学(在西欧语文中,于希腊语kryptós“隐藏的”,和gráphein“书写”)是研究如何隐密地传递信息的学科。在现代特别指对信息以及其传输的数学性研究,常被认为是数学和计算机科学的分支,和信息论也密切相关。著名的密码学者Ron Rivest解释道:“密码学是关于如何在敌人存在的环境中通讯”,自工程学的角度,这相当于密码学与纯数学的异同。密码学是信息安全等相关议题,如认证、访问控制的核心。密码学的首要目的是隐藏信息的涵义,并不是隐藏信息的存在。密码学也促进了计算机科学,特别是在于电脑与网络安全所使用的技术,如访问控制与信息的机密性。密码学已被应用在日常生活:包括自动柜员机的芯片卡、电脑使用者存取密码、电子商务等等。

密码是通信双方按约定的法则进行信息特殊变换的一种重要保密手段。依照这些法则,变明文为密文,称为加密变换;变密文为明文,称为脱密变换。密码在早期仅对文字或数码进行加、脱密变换,随着通信技术的发展,对语音、图像、数据等都可实施加、脱密变换。

发展历程

编辑
密码学的发展历程可分为三个阶段:分别是古典密码、近代密码与现代密码 。

密码学密码学

密码学(在西欧语文中,源于希腊语kryptós“隐藏的”,和gráphein“书写”)是研究如何隐密地传递信息的学科。在现代特别指对信息以及其传输的数学性研究,常被认为是数学和计算机科学的分支,和信息论也密切相关。著名的密码学者Ron Rivest解释道:“密码学是关于如何在敌人存在的环境中通讯”,自工程学的角度,这相当于密码学与纯数学的异同。密码学是信息安全等相关议题,如认证、访问控制的核心。密码学的首要目的是隐藏信息的涵义,并不是隐藏信息的存在。密码学也促进了计算机科学,特别是在于电脑与网络安全所使用的技术,如访问控制与信息的机密性。密码学已被应用在日常生活:包括自动柜员机的芯片卡、电脑使用者存取密码、电子商务等等。

密码是通信双方按约定的法则进行信息特殊变换的一种重要保密手段。依照这些法则,变明文为密文,称为加密变换;变密文为明文,称为脱密变换。密码在早期仅对文字或数码进行加、脱密变换,随着通信技术的发展,对语音、图像、数据等都可实施加、脱密变换。

密码学是在编码与破译的斗争实践中逐步发展起来的,并随着先进科学技术的应用,已成为一门综合性的尖端技术科学。它与语言学、数学、电子学、声学、信息论、计算机科学等有着广泛而密切的联系。它的现实研究成果,特别是各国政府现用的密码编制及破译手段都具有高度的机密性。

密码学密码学

进行明密变换的法则,称为密码的体制。指示这种变换的参数,称为密钥。它们是密码编制的重要组成部分。密码体制的基本类型可以分为四种:错乱--按照规定的图形和线路,改变明文字母或数码等的位置成为密文;代替--用一个或多个代替表将明文字母或数码等代替为密文;密本--用预先编定的字母或数字密码组,代替一定的词组单词等变明文为密文;加乱--用有限元素组成的一串序列作为乱数,按规定的算法,同明文序列相结合变成密文。以上四种密码体制,既可单独使用,也可混合使用 ,以编制出各种复杂度很高的实用密码。

20世纪70年代以来,一些学者提出了公开密钥体制,即运用单向函数的数学原理,以实现加、脱密密钥的分离。加密密钥是公开的,脱密密钥是保密的。这种新的密码体制,引起了密码学界的广泛注意和探讨。

利用文字和密码的规律,在一定条件下,采取各种技术手段,通过对截取密文的分析,以求得明文,还原密码编制,即破译密码。破译不同强度的密码,对条件的要求也不相同,甚至很不相同。

理论基础

编辑
在通信过程中,待加密的信息称为明文,已被加密的信息称为密文,仅有收、发双方知道的信息称为密钥。在密钥控制下,由明文变到密文的过程叫加密,其逆过程叫脱密或解密。在密码系统中,除合法用户外,还有非法的截收者,他们试图通过各种办法窃取机密(又称为被动攻击)或窜改消息(又称为主动攻击)。

图3 密码系统模型图3 密码系统模型

一个密码通信系统可如图3所示。

对于给定的明文m和密钥k,加密变换Ek将明文变为密文c=f(m,k)=Ek(m),在接收端,利用脱密密钥k1,(有时k=k1,)完成脱密操作,将密文c恢复成原来的明文m=Dk1(c)。一个安全的密码体制应该满足:①非法截收者很难从密文C中推断出明文m;②加密和脱密算法应该相当简便,而且适用于所有密钥空间;③密码的保密强度只依赖于密钥;④合法接收者能够检验和证实消息的完整性和真实性;⑤消息的发送者无法否认其所发出的消息,同时也不能伪造别人的合法消息;⑥必要时可由仲裁机构进行公断。

现代密码学所涉及的学科包括:信息论、概率论、数论、计算复杂性理论、近世代数、离散数学、代数几何学和数字逻辑等。

专业术语

编辑
密钥:分为加密密钥和解密密钥。

明文:没有进行加密,能够直接代表原文含义的信息。

密文:经过加密处理处理之后,隐藏原文含义的信息。

加密:将明文转换成密文的实施过程。

解密:将密文转换成明文的实施过程。

密码算法:密码系统采用的加密方法和解密方法,随着基于数学密码技术的发展,加密方法一般称为加密算法,解密方法一般称为解密算法。

直到现代以前,密码学几乎专指加密(encryption)算法:将普通信息(明文,plaintext)转换成难以理解的资料(密文,ciphertext)的过程;解密(decryption)算法则是其相反的过程:由密文转换回明文;加解密包含了这两种算法,一般加密即同时指称加密(encrypt或encipher)与解密(

加解密的具体运作由两部分决定:一个是算法,另一个是密钥。密钥是一个用于加解密算法的秘密参数,通常只有通讯者拥有。历史上,密钥通常未经认证或完整性测试而被直接使用在密码机上。

密码协议(cryptographic protocol)是使用密码技术的通信协议(communication protocol)。近代密码学者多认为除了传统上的加解密算法,密码协议也一样重要,两者为密码学研究的两大课题。在英文中,cryptography和cryptology都可代表密码学,前者又称密码术。但更严谨地说,前者(cryptography)指密码技术的使用,而后者(cryptology)指研究密码的学科,包含密码术与密码分析。密码分析(cryptanalysis)是研究如何破解密码学的学科。但在实际使用中,通常都称密码学(英文通常称cryptography),而不具体区分其含义。

口语上,编码(code)常意指加密或隐藏信息的各种方法。然而,在密码学中,编码有更特定的意义:它意指以码字(code word)取代特定的明文。例如,以‘苹果派’(apple pie)替换‘拂晓攻击’(attack at dawn)。编码已经不再被使用在严谨的密码学,它在信息论或通讯原理上有更明确的意义。

在汉语口语中,电脑系统或网络使用的个人帐户口令(password)也常被以密码代称,虽然口令亦属密码学研究的范围,但学术上口令与密码学中所称的钥匙(key)并不相同,即使两者间常有密切的关连。

学科经历

编辑
其实在公元前,秘密书信已用于战争之中。西洋“史学之父”希罗多德(Herodotus)的《历史》(The Histories)当中记载了一些最早的秘密书信故事。公元前5世纪,希腊城邦为对抗奴役和侵略,与波斯发生多次冲突和战争。于公元前480年,波斯秘密结了强大的军队,准备对雅典(Athens)和斯巴达(Sparta)发动一次突袭。希腊人狄马拉图斯(Demaratus)在波斯的苏萨城(Susa)里看到了这次集结,便利用了一层蜡把木板上的字遮盖住,送往并告知了希腊人波斯的图谋。最后,波斯海军覆没于雅典附近的沙拉米斯湾(Salamis Bay)。

由于古时多数人并不识字,最早的秘密书写的形式只用到纸笔或等同物品,随着识字率提高,就开始需要真正的密码学了。最古典的两个加密技巧是:

置换(Transposition cipher):将字母顺序重新排列,例如‘help me’变成‘ehpl em’。

替代(substitution cipher):有系统地将一组字母换成其他字母或符号,例如‘fly at once’变成‘gmz bu podf’(每个字母用下一个字母取代)。

编写方法

编辑

移位式

移位式(Transposition cipher):将字母顺序重新排列,例如‘help me’变成‘ehpl em’;与替代式(substitutioncipher):有系统地将一组字母换成其他字母或符号,例如‘fly at once’变成‘gmz bu podf’(每个字母用下一个字母取代)。 这两种单纯的方式都不足以提供足够的机密性。凯撒密码是最经典的替代法,据传由古罗马帝国的皇帝凯撒所发明,用在与远方将领的通讯上,每个字母被往后位移三格字母所取代。

加密

加密旨在确保通讯的秘密性,例如间谍、军事将领、外交人员间的通讯,同时也有宗教上的应用。举例来说,早期基督徒使用密码学模糊他们写作的部份观点以避免遭受迫害。666或部分更早期的手稿上的616是新约基督经启示录所指的野兽的数字,常用来暗指专迫害基督徒的古罗马皇帝尼禄(Nero)。史上也有部份希伯来文密码的记载。古印度欲经中也提及爱侣可利用密码来通信。隐写术也出现在古代,希罗多德记载将信息刺青在奴隶的头皮上,较近代的隐写术使用隐形墨水、缩影术(microdots)或数字水印来隐藏信息。

曾公亮丁度等编撰《武经总要》“字验”记载,北宋前期,在作战中曾用一首五言律诗的40个汉字,分别代表40种情况或要求,这种方式已具有了密本体制的特点。

密码学密码学

1871年,由上海大北水线电报公司选用6899个汉字,代以四码数字,成为中国最初的商用明码本,同时也设计了由明码本改编为密本及进行加乱的方法。在此基础上,逐步发展为各种比较复杂的密码。

在欧洲,公元前405年,斯巴达的将领来山得使用了原始的错乱密码;公元前一世纪,古罗马皇帝凯撒曾使用有序的单表代替密码;之后逐步发展为密本、多表代替及加乱等各种密码体制。

二十世纪初,产生了最初的可以实用的机械式和电动式密码机,同时出现了商业密码机公司和市场。60年代后,电子密码机得到较快的发展和广泛的应用,使密码的发展进入了一个新的阶段。

密码破译

编辑
密码破译是随着密码的使用而逐步产生和发展的。1412年,波斯人卡勒卡尚迪所编的百科全书中载有破译简单代替密码的方法。到16世纪末期,欧洲一些国家设有专职的破译人员,以破译截获的密信。密码破译技术有了相当的发展。1863年普鲁士人卡西斯基所著《密码和破译技术》,以及1883年法国人克尔克霍夫所著《军事密码学》等著作,都对密码学的理论和方法做过一些论述和探讨。1949年美国人香农发表了《秘密体制的通信理论》一文,应用信息论的原理分析了密码学中的一些基本问题。

自19世纪以来,由于电报特别是无线电报的广泛使用,为密码通信和第三者的截收都提供了极为有利的条件。通信保密和侦收破译形成了一条斗争十分激烈的隐蔽战线。

1917年,英国破译了德国外长齐默尔曼的电报,促成了美国对德宣战。1942年,美国从破译日本海军密报中,获悉日军对中途岛地区的作战意图和兵力部署,从而能以劣势兵力击破日本海军的主力,扭转了太平洋地区的战局。在保卫英伦三岛和其他许多著名的历史事件中,密码破译的成功都起到了极其重要的作用,这些事例也从反面说明了密码保密的重要地位和意义。

当今世界各主要国家的政府都十分重视密码工作,有的设立庞大机构,拨出巨额经费,集中数以万计的专家和科技人员,投入大量高速的电子计算机和其他先进设备进行工作。与此同时,各民间企业和学术界也对密码日益重视,不少数学家、计算机学家和其他有关学科的专家也投身于密码学的研究行列,更加速了密码学的发展。

密码学密码学

在密码已经成为单独的学科,从传统意义上来说,密码学是研究如何把信息转换成一种隐蔽的方式并阻止其他人得到它。

密码学是一门跨学科科目,从很多领域衍生而来:它可以被看做是信息理论,却使用了大量的数学领域的工具,众所周知的如数论和有限数学。

原始的信息,也就是需要被密码保护的信息,被称为明文。加密是把原始信息转换成不可读形式,也就是密码的过程。解密是加密的逆过程,从加密过的信息中得到原始信息。cipher是加密和解密时使用的算法。

最早的隐写术只需纸笔,加密法,将字母的顺序重新排列;替换加密法,将一组字母换成其他字母或符号。经典加密法的资讯易受统计的攻破,资料越多,破解就更容易,使用分析频率就是好办法。经典密码学仍未消失,经常出现在智力游戏之中。在二十世纪早期,包括转轮机在内的一些机械设备被发明出来用于加密,其中最著名的是用于第二次世界大战的密码机Enigma。这些机器产生的密码相当大地增加了密码分析的难度。比如针对Enigma各种各样的攻击,在付出了相当大的努力后才得以成功。

基本功能

编辑
数据加密的基本思想是通过变换信息的表示形式来伪装需要保护的敏感信息,使非授权者不能了解被保护信息的内容。网络安全使用密码学来辅助完成在传递敏感信息的的相关问题,主要包括:

(I)机密性(confidentiality)

仅有发送方和指定的接收方能够理解传输的报文内容。窃听者可以截取到加密了的报文,但不能还原出原来的信息,即不能得到报文内容。

(II)鉴别(authentication)

发送方和接收方都应该能证实通信过程所涉及的另一方, 通信的另一方确实具有他们所声称的身份。即第三者不能冒充跟你通信的对方,能对对方的身份进行鉴别。

(III)报文完整性(message intergrity)

即使发送方和接收方可以互相鉴别对方,但他们还需要确保其通信的内容在传输过程中未被改变。

(IV)不可否认性(non-repudiation)

如果人们收到通信对方的报文后,还要证实报文确实来自所宣称的发送方,发送方也不能在发送报文以后否认自己发送过报文。

学科分类

编辑

传统学科

Autokey密码

置换密码

二字母组代替密码 (by Charles Wheatstone)

多字母替换密码

希尔密码

维吉尼亚密码

替换式密码

凯撒密码

摩尔斯电码

ROT13

仿射密码

Atbash密码

换位密码

Scytale

Grille密码

VIC密码 (一种复杂的手工密码,在五十年代早期被至少一名苏联间谍使用过,在当时是十分安全的)

流密码

LFSR流密码

EIGamal密码

RSA密码

对传统密码学的攻击

频率分析

重合指数

经典密码学

在近代以前,密码学只考虑到信息的机密性(confidentiality):如何将可理解的信息转换成难以理解的信息,并且使得有秘密信息的人能够逆向回复,但缺乏秘密信息的拦截者或窃听者则无法解读。近数十年来,这个领域已经扩展到涵盖身分认证(或称鉴权)、信息完整性检查、数字签名、互动证明、安全多方计算等各类技术。

古中国周朝兵书《六韬.龙韬》也记载了密码学的运用,其中的《阴符》和《阴书》便记载了周武王问姜子牙关于征战时与主将通讯的方式:

太公曰:“主与将,有阴符,凡八等。有大胜克敌之符,长一尺。破军擒将之符,长九寸。降城得邑之符,长八寸。却敌报远之符,长七寸。警众坚守之符,长六寸。请粮益兵之符,长五寸。败军亡将之符,长四寸。失利亡士之符,长三寸。诸奉使行符,稽留,若符事闻,泄告者,皆诛之。八符者,主将秘闻,所以阴通言语,不泄中外相知之术。敌虽圣智,莫之能识。”

武王问太公曰:“… 符不能明;相去辽远,言语不通。为之奈何?”

太公曰:“诸有阴事大虑,当用书,不用符。主以书遗将,将以书问主。书皆一合而再离,三发而一知。再离者,分书为三部。三发而一知者,言三人,人操一分,相参而不相知情也。此谓阴书。敌虽圣智,莫之能识。”

阴符是以八等长度的符来表达不同的消息和指令,可算是密码学中的替代法(en:substitution),把信息转变成敌人看不懂的符号。至于阴书则运用了移位法,把书一分为三,分三人传递,要把三份书重新拼合才能获得还原的信息。

除了应用于军事外,公元四世纪婆罗门学者伐蹉衍那(en:Vatsyayana) 所书的《欲经》4 中曾提及到用代替法加密信息。书中第45项是秘密书信(en:mlecchita-vikalpa) ,用以帮助妇女隐瞒她们与爱郞之间的关系。其中一种方法是把字母随意配对互换,如套用在罗马字母中,可有得出下表:

A

B

C

D

E

F

G

H

I

J

K

L

M

Z

Y

X

W

V

U

T

S

R

Q

P

O

N

由经典加密法产生的密码文很容易泄漏关于明文的统计信息,以现代观点其实很容易被破解。阿拉伯人津帝(en:al-Kindi)便提及到如果要破解加密信息,可在一篇至少一页长的文章中数算出每个字母出现的频率,在加密信件中也数算出每个符号的频率,然后互相对换,这是频率分析的前身,此后几乎所有此类的密码都马上被破解。但经典密码学仍未消失,经常出现在谜语之中(见en:cryptogram)。这种分析法除了被用在破解密码法外,也常用于考古学上。在破解古埃及象形文字(en:Hieroglyphs)时便运用了这种解密法。

现代学科

标准机构

the Federal Information Processing Standards Publication program (run by NIST to produce standards in many areas to guide operations of the US Federal government; many FIPS Pubs are cryptography related,ongoing)

the ANSI standardization process (produces many standards in many areas; some are cryptography related,ongoing)

ISO standardization process (produces many standards in many areas; some are cryptography related,ongoing)

IEEE standardization process (produces many standards in many areas; some are cryptography related,ongoing)

IETF standardization process (produces many standards (called RFCs) in many areas; some are cryptography related,ongoing)

See Cryptography standards

加密组织

NSA internal evaluation/selections (surely extensive,nothing is publicly known of the process or its results for internal use; NSA is charged with assisting NIST in its cryptographic responsibilities)

GCHQ internal evaluation/selections (surely extensive,nothing is publicly known of the process or its results for GCHQ use; a division of GCHQ is charged with developing and recommending cryptographic standards for the UK government)

DSD Australian SIGINT agency - part of ECHELON

Communications Security Establishment (CSE) - Canadian intelligence agency.

努力成果

the DES selection (NBS selection process,ended 1976)

the RIPE division of the RACE project (sponsored by the European Union,ended mid-'80s)

the AES competition (a 'break-off' sponsored by NIST; ended 2001)

the NESSIE Project (evaluation/selection program sponsored by the European Union; ended 2002)

the CRYPTREC program (Japanese government sponsored evaluation/recommendation project; draft recommendations published 2003)

the Internet Engineering Task Force (technical body responsible for Internet standards -- the Request for Comment series: ongoing)

the CrypTool project (eLearning programme in English and German; freeware; exhaustive educational tool about cryptography and cryptanalysis)

加密散列函数 (消息摘要算法,MD算法) 

加密散列函数

消息认证码

Keyed-hash message authentication code

EMAC (NESSIE selection MAC)

HMAC (NESSIE selection MAC; ISO/IEC 9797-1,FIPS and IETF RFC)

TTMAC 也称 Two-Track-MAC (NESSIE selection MAC; K.U.Leuven (Belgium) & debis AG (Germany))

UMAC (NESSIE selection MAC; Intel,UNevada Reno,IBM,Technion,& UCal Davis)

MD5 (系列消息摘要算法之一,由MIT的Ron Rivest教授提出; 128位摘要)

SHA-1 (NSA开发的160位摘要,FIPS标准之一;第一个发行发行版本被发现有缺陷而被该版本代替; NIST/NSA 已经发布了几个具有更长'摘要'长度的变种; CRYPTREC推荐 (limited))

SHA-256 (NESSIE 系列消息摘要算法,FIPS标准之一180-2,摘要长度256位 CRYPTREC recommendation)

SHA-384 (NESSIE 列消息摘要算法,FIPS标准之一180-2,摘要长度384位; CRYPTREC recommendation)

SHA-512 (NESSIE 列消息摘要算法,FIPS标准之一180-2,摘要长度512位; CRYPTREC recommendation)

RIPEMD-160 (在欧洲为 RIPE 项目开发,160位摘要;CRYPTREC 推荐 (limited))

Tiger (by Ross Anderson et al)

Snefru

Whirlpool (NESSIE selection hash function,Scopus Tecnologia S.A. (Brazil) & K.U.Leuven (Belgium))

公/私钥加密算法(也称 非对称性密钥算法)

ACE-KEM (NESSIE selection asymmetric encryption scheme; IBM Zurich Research)

ACE Encrypt

Chor-Rivest

Diffie-Hellman(key agreement; CRYPTREC 推荐)

El Gamal (离散对数)

ECC(椭圆曲线密码算法) (离散对数变种)

PSEC-KEM (NESSIE selection asymmetric encryption scheme; NTT (Japan); CRYPTREC recommendation only in DEM construction w/SEC1 parameters) )

ECIES (Elliptic Curve Integrated Encryption System; Certicom Corp)

ECIES-KEM

ECDH (椭圆曲线Diffie-Hellman 密钥协议; CRYPTREC推荐)

EPOC

Merkle-Hellman (knapsack scheme)

McEliece

NTRUEncrypt

RSA (因数分解)

RSA-KEM (NESSIE selection asymmetric encryption scheme; ISO/IEC 18033-2 draft)

RSA-OAEP (CRYPTREC 推荐)

Rabin cryptosystem (因数分解)

Rabin-SAEP

HIME(R)

XTR

公/私钥签名算法

DSA(zh:数字签名;zh-tw:数位签章算法) (来自NSA,zh:数字签名;zh-tw:数位签章标准(DSS)的一部分; CRYPTREC 推荐)

Elliptic Curve DSA (NESSIE selection digital signature scheme; Certicom Corp); CRYPTREC recommendation as ANSI X9.62,SEC1)

Schnorr signatures

RSA签名

RSA-PSS (NESSIE selection digital signature scheme; RSA Laboratories); CRYPTREC recommendation)

RSASSA-PKCS1 v1.5 (CRYPTREC recommendation)

Nyberg-Rueppel signatures

MQV protocol

Gennaro-Halevi-Rabin signature scheme

Cramer-Shoup signature scheme

One-time signatures

Lamport signature scheme

Bos-Chaum signature scheme

Undeniable signatures

Chaum-van Antwerpen signature scheme

Fail-stop signatures

Ong-Schnorr-Shamir signature scheme

Birational permutation scheme

ESIGN

ESIGN-D

ESIGN-R

Direct anonymous attestation

NTRUSign用于移动设备的公钥加密算法,密钥比较短小但也能达到高密钥ECC的加密效果

SFLASH (NESSIE selection digital signature scheme (esp for smartcard applications and similar); Schlumberger (France))

Quartz

秘密钥算法 (也称 对称性密钥算法)

流密码

A5/1,A5/2 (GSM移动电话标准中指定的密码标准)

BMGL

Chameleon

FISH (by Siemens AG)

二战'Fish'密码

Geheimfernschreiber (二战时期Siemens AG的机械式一次一密密码,被布莱奇利(Bletchley)庄园称为STURGEON)

Schlusselzusatz (二战时期 Lorenz的机械式一次一密密码,被布莱奇利(Bletchley)庄园称为之后人们都是以书写在纸张上的方式,用来传秘密讯息。在二次大战中,密码更是扮演一个举足轻重的角色,许多人认为同盟国之所以能打赢这场战争完全归功于二次大战时所发明的破译密文数位式计算机破解德日密码。西元1949年,Shannon提出第一篇讨论密码系统通讯理论之论文,近代密码学可说是滥觞于斯。直至西元1975年,Diffie与Hellman提出公开金

匙密码系统之观念,近代密码学之研究方向,正式脱离秘密金匙密码系统之窠臼,蓬勃发展,至今已近二十年。发展至今,已有二大类的密码系统。第一类为对称金钥(Symmetric Key)密码系统,第二类为非对称金钥(Public Key) 密码系统。

1965年,美国史丹福大学电机工程系--默克尔、迪菲、赫尔曼等三人研究密码学可惜并未有所发现。另外在英国通讯电子保安组(CESG)秘密机构的切尔纳姆发现了还原密码式,但是由于属于秘密机构,所以不能公开。直到1977年麻省理工研究生--里夫斯,阿德曼发现和切尔曼差不多的式。他们成立RSA Security

Company (RSA是他们名字的字头)现时值25亿美元,在传送信用卡时起了很大作用。RSA已安装了5亿套产品在 IE,Netscape下的小锁就是RSA的产品。数学挂销第一个发现不是美国,但?是第一个公开。数学挂锁上锁易,还原难,所以受广泛使用,亦即是信息编码保密。

数学挂锁泛例:

数学挂锁用单向式:N=pxq <--例子 N(合成数)=两个质数的乘

11x17=187=N

还原单向式公式:C=Me(mod N) *e是M的次数,因为在记事本中打不到*

M*13*(mod 187)=C *13是M的次数*

c=165

x=88 (password kiss)

88*13*(mod 187)=165 *13是88的次数*

modN=M

C*1/e*mod(p-1)(q-1)=88

C=165

p=11

q=17

answer:mod 187=88

一般有两种类型密码学被使用:

symmetric key (对称性的钥匙)和public key (公开的钥匙)(也叫 非对称的钥匙)密码学.

举一个简单的对称的钥匙密码学的范例,假想从朋友处收到一个通知. 你和你的朋友同意来加解密你们的讯息,

你们将使用下列演算法:每个字母将会上移三个字母,例如 A=C,B=D,而 Y 和 Z 转一圈回到 A 和 B,

这个方程式 ("每个字母上移三个字母") 就是送信者使用来加密讯息的钥匙; 而收信者使用相同的钥匙来解密 .

任何人如果没有钥匙就不能够读此讯息. 因为相同的钥匙视同实用来加密及解密讯息,这个方法是一个对称钥匙

的演算法. 这类的密码学及是我们所知的秘密钥匙密码学,因为此钥匙 必须被秘密保存于送信者和收信者,以保护资料的完整性.

非对称性密码学

非对称性或公开的钥匙 密码学,不同于对称性的 密码学,在于其加密钥匙只适用于单一使用者.

钥匙被分为两个部分:

一把私有的钥匙,仅有使用者才拥有.

一把公开的钥匙,可公开发行配送,只要有要求即取得.

每支钥匙产生一个被使用来改变内文的功能. 私有的钥匙 产生一个 私有改变内文的功能,而公开的钥匙 产生一个 公开改变内文的功能.

这些功能是反向相关的,例如.,如果一个功能是用来加密讯息,另外一个功能则被用来解密讯息.不论此改变内文功能的次序为何皆不重要.

公开的钥匙系统的优势是两个使用者能够安全的沟通而不需交换秘密钥匙. 例如,假设一个送信者需要传送一个信息给一个收信者,

而信息的秘密性是必要的,送信者以收信者的公开的钥匙来加密,而仅有收信者的私有的钥匙能够对此信息解密.

公开的钥匙密码学是非常适合于提供认证,完整和不能否认的服务,所有的这些服务及是我们所知的数位签名.

基本原理的密码法,可以分成两种:移位法(transposition)和替代法(substitution),

移位法就是将讯息里面的文字,根据一定的规则改变顺序,这种方法,在文字数量很大的时候,

便可以显示出它的优势,例如"Hello World"才不过10个字母便可以有11708340914350080000种排列的方式。

另外一种方法,就是替代法,还可以分成两种,一种是单字替代,一种是字母替代,两种的原理是一样的,

就是利用文字相对顺序的对应,来改变原来的文章,以英文为例,我们可以把英文字母往后移动三个位置,即:

a b c d e f g h i j k l m n o p q r s t u v w x y z

D E F G H I J K L M N O P Q R S T U V W X Y Z A B C

泛例:Hello World How are you

khoor zruog krz duh brx

这句话就变的难以辨认了,而且如果发信人收信人有协定好的话,那还可以把文字之间的空白删除,反正翻译回来的时候,

可以靠文句的意思,来推测断句断字的时机。而单字替代,则是以每个单字,都去换成另外一个相对应的单字,这样来改写原文,

变成一个无法辨认其意义的加密文件。

移位法当然不只限于一种,光是英文字母不考虑大小写,就可以有25种互异的方法,每种密码法,都可视为一种加密法,

我们称为演算法(algorithm),和一把钥匙(KEY)的组合结果。钥匙是用来指定加密程序的演算细节。以移位法为例,

演算法是只以密码字母集里的字母,取代明文字母集里面的字母,钥匙便是收发信人定义的密码字母集。

整个密码学发展的程序,辨识找寻新的演算法,和保护钥匙避免被解密者发现的程序,钥匙在密码学中非常重要,因为即使演算法相同或太简单,

没有加密的钥匙的话,我们仍然很难去破解加密的文件。以单纯的英文字母,不单纯的平移,而用一个字母一个字母互换的话,不考虑大小写,

就有403291461126605635584000000种不同的钥匙必须要去测试,才可以得到原来的明文。

量子密码学(Jennewein et al.,Quantum Cryptography with EntangledPhotons,Physical Review Letters,May 15,2000,Vol 84,Iss 20,pp. 4729-4732)

三个独立研究机构首次实验证明利用量子幽灵式的特性来建构密码之可行性,这项研究提供未来对付电脑骇客的防犯之道.

在这个最新--也是最安全--的资料加密解密架构(即量子密码学)中,研究者是采用一对 entangled光子,

而这对粒子即使相隔远距离的情况下,仍有密切的互动关系.

entanglement-based 的量子密码学具有唯一的,不可被窃听的传输特性,如果有偷听者想窃取资料,也很容易的可以监测出来.

简而言之,entanglement process 可以建立完整的,随机的 0与 1 序列提供两端使用者传输资料,如果有骇客从中撷取资料,

那么这个讯息序列将被改变,用户就会发现有窃听者,并授权放弃被窃听的资料. 这种数位随机序列,或称 “金钥匙”,

再和资料进行计算 (如互斥或闸 XOR),即加密程序,使得这资料串形成一完全随机序列,这方法就是已知的 one-time pad cipher. 同理,

接收端也是靠着金钥匙来进行解密程序.

在研究中,Los Alamos 研究者模拟一位窃听者窃取传输资料,成功地被侦测出来,并授权用户放弃被窃取的资料.

而在澳洲的研究团队,则建立了一公里长的光纤来连接两个完全独立的传输,接收站来验证 entangled 密码理论,

他们建立了金钥匙并成功的传输 Venus 影像. 同时,在 University of Geneva 团队建构超过数公里的光纤,

并使用光子频率来验证entangled 密码理论.

在这些实验中,虽然他们的传输速率较慢,但 entanglement-based 密码理论在未来极有可能超越non-entangled 量子密码理论,

不仅是传输速率,而且在预防资料被窃取方面,所需要的额外光子也比较少.

密码强度

密码强度指一个密码被非认证的用户或计算机破译的难度。 密码强度通常用“弱”或“强”来形 容。“弱”和“强”是相对的,不同的密码系统对于密码强度有不同的要求。密码的破译与系统允许客户尝试不同密码的次数、是否熟悉密码主人等因素相关。然而,即使再强的密码也有可能被偷取、破译或泄漏,在用户设置密码时,尽可能的将密码设置的越复杂、位数越长、经常更换此类型的密码,从而才能让密码强度尽可能达到最高。

高强度的密码应该是: 包括大小写字母、数字和符号,且长度不宜过短,最好不少于10位。 不包含生日、手机号码等易被猜出的信息。 此外,建议您定期更换密码,不要轻易把您的账号或者密码透露给别人。0与1 2进制中得原始代码,通常可以控制如:2极管,3极管等电子元器件得通与分