-
X射线天文学 编辑
射线天文学是用X射线(波长0.01~100埃的电磁辐射)研究天体的一门学科。天体的X射线受到地球大气的严重阻碍,主要利用卫星进行探测。因此,虽然 X射线的探测始于二十世纪四十年代,但是,成为一门学科,则是人造地球卫星上天以后的事。早期的观测工作集中于太阳的研究。自从1962年6月18日美国麻省理工学院研究小组第一次发现来自天蝎座方向的强大X射线源以后,非太阳X射线天文学进入一个新的发展阶段。
中文名:X射线天文学
外文名:X-ray astronomy
学科性质:用X射线研究天体的一门学科
探测工具:卫星
始于:二十世纪四十年代
X射线:波长0.01~100埃的电磁辐射
探测:始于二十世纪四十年代
X射线亮斑
X 射线天文学中常以电子伏特(eV)表示光子的能量,观测对象为0.1keV到100keV的X射线。其中又将0.1keV-10keV的X射线称为软X射线,10keV-100keV称为硬X射线。
由于X射线属于电磁波谱的高能端,因此X射线天文学与伽玛射线天文学同称为高能天体物理学。
补充:
X射线,想必你并不陌生。在医院体检的时候,医生会用X射线仪透视你的心肺。这种仪器的X射线是人工产生的。用一定的电压在真空中把电子加速,让电子打在一个靶上。电子突然减速过程中,它的大部分动能即转化为光子能量,从而发出X射线。1895年11月,德国物理学家伦琴(W.K.Roentgen )在进行阴极射线的实验中,发现射线管中发出了某种射线。因为当时对于这种射线的本质属性了解甚少,所以他称之为X射线,表示未知的意思,现在也称为伦琴射线。1901年诺贝尔奖第一次颁发,伦琴就由于这一发现而获得了这一年的物理学奖。
因为天体的 X射线会受到地球大气的严重阻碍,所以主要利用卫星进行探测。因此,虽然 X射线的探测始于二十世纪四十年代,但是成为一门学科,则是人造地球卫星上天以后的事。
早期的观测工作集中于太阳的研究。自从1962年6月18日美国麻省理工学院研究小组第一次发现来自天蝎座方向的强大 X射线源以后,非太阳 X射线天文学进入一个新的发展阶段。七十年代以来,发射了专门研究 X射线的天文卫星,观测到许多先前不知道的宇宙 X射线源,使X射线源的数目从十几个猛增到一千多个。
美国麻省理工学院天文学家WalterH.·G.Lewin和荷兰阿姆斯特丹大学天文学家Jan Van Paradjjs曾在1986年第三季度评述了准周期振荡现 象,现将他们文章的主要内容刊载于下。 x射线天文学最近发现了称作准周期振荡的新 现象,这是使人感到惊奇的;振荡的起源尚属未知. 因此,要判断其重要性,为时尚早。 大约的个已知的低质量亮X射线双星是年龄很 老的天体(其寿命为几x 10.年)。在大多数情况下, 它们包含有一颗中子星,中子星从邻近的低质量伴星吸积物质。有证据表明,中子星的偶极磁场随着其年龄而变弱(中子星诞生时,其磁场强度高达1013高斯).磁场变得越弱,吸积盘将越接近中子星,而中子星就自转得越快(作为吸积转矩的结果,它自转加速)。对很弱的磁场(例如石1丁高斯),中子星可达到大约1毫秒的最短周期,此周期可同中子星表面附近物质的开普勒周期相比拟。 一般来说,在X射线双星中,中子星的自转可作为相干X射线脉冲检测到,这是中子星的磁极漏斗状吸积的结果。许多年努、大质量的X射线双星中观测到有相干X射线脉冲,其典型周期约在1秒到几百秒之间。
X射线耀斑
过去几年,太阳 X射线测量的一个重要方面,是探测 X射线爆发的能谱和偏振。着重于研究耀斑脉冲阶段的高能天体物理过程,如高能粒子的起源、传输、能量的转化以及发射的性质等等。目前已初步确立了X射线辐射源的模型,这对耀斑物理的研究有重要价值。另外,已经研究清楚,太阳X射线在形成地球电离层的过程中起重要作用。
X射线望远镜已具有角秒量级的高分辨本领,这就为深入研究太阳现象创造了条件。X射线耀斑和X射线亮斑的发现大大增进对太阳活动区的研究和认识。而X射线冕洞的发现,更是太阳物理学的一项重大成果。现在已经查明,X射线冕洞就是高速太阳风的风源,也就是日地关系研究中长期没有弄清楚的M区。冕洞物理提出了许多有价值的课题,如冕洞的形成,高速太阳风源的成因等,特别是冕洞的刚性转动倾向迄今还未找到满意的解答。
非太阳X射线天文学
十多年来,非太阳X射线天文学发展特别迅速,取得重大的突破。在已发现的X射线源中,有多种不同类型的客体,而目前只有少量得到确切的光学证认。在星系和星系团中的强射电星系(如室女座A等)和活动的塞佛特星系等均为著名的X射线源。作为河内的展源,超新星遗迹(如蟹状星云、仙后座A等)也是一类重要的X射线源。有些X射线源,光学证认为双星的成员星,如半人马座X-3、武仙座X-1、天蝎座X-1、天鹅座X-1等等,它们的成员星之一是X射线星。按照现代X射线双星理论,猜想这种X射线星是中子星或黑洞。
大量射电脉冲星的发现,诱导人们去探索X射线脉冲星的存在。随着新的探测技术的发展,已有可能发现后一种脉冲星。1969年发现蟹状星云脉冲星PSR0532的X射线脉冲辐射,它和对应的光学脉冲几乎有完全相同的周期。后来又发现了其他类型的X射线脉冲星。这些发现对双星演化过程的研究很有价值。
X射线天文观测的另一类课题是关于弥漫X射线背景测量。几乎是各向同性的宇宙X射线背景辐射的发现,被认为是六十年代X射线天文学的重大成就之一。
1974年以后的几年中,英国“羚羊”5号及其他卫星,相继发现了宇宙X射线爆发和一批暂现X射线源,从而在宇宙中又揭示了一批前所未知的现象和新型 X射线源,这被公认为七十年代天文学的重大发现。这些过程所释放的能量之大,能量释放速度之快,贮能密度之高以及奇特的再现周期,迄今仍然是现代高能天体物理学的重大研究课题。
在非太阳X射线源的探测方面,为提高灵敏度,常常需要大面积的薄宙正比计数器。这种仪器的制造技术近年来发展较快。美国小型天文卫星“自由号”曾使用面积达840平方厘米、厚仅50微米的铍窗正比计数器。随着X射线能量的升高,正比计数器将失去作用,它的探测上限约为60千电子伏。更高能量的探测,则须用闪烁计数器。
正比计数器和闪烁计数器本身没有任何成像和定向功能。为了证认各种X射线源和精确定出它们在空中的方位,必须在计数器前部加上准直器。这种准直技术近几年发展特别迅速。目前广泛使用的准直器类型有丝栅型准直器、板条型准直器和蜂窝状准直器等。前者多用于软X射线波段,后两种用于硬X射线波段。此外,还有闪烁体构成的主动式准直器。
实验X射线天文学的一个突出成就,就是将掠射光学原理应用于X射线天文,使大面积X光聚焦成像技术成为现实,制成了真正有研究价值的高分辨本领的X射线望远镜。它提供了把X射线的探测区域扩大到更遥远的宇宙深处的可能性。
X射线天文学从诞生时起,在近二十年的短暂时间内发现了一系列前所未知的新型天体,获得光学天文和射电天文无法得到的天体信息,大大地扩展了天文学的研究领域。X射线天文学所显示的独特威力,使得它在当代空间天文学中处于特别重要的地位。
X射线冕洞
观测到的宇宙x射线源不同于可见光观测助源,它们大都是包含着很多很多星的巨人热气体云,例如来自几百亿光年的宇宙x射线源可包含几百万亿颗星。x射线天文观测所采用的探测器有探测软x射线的薄窗正比计数器和探测硬x射线的闪烁计数器。应用掠射光学原理,能使大面积x光聚焦成像,从而可以大大提高探测器分辨率。通过x射线天文观测已揭示了一系列前所未知的天体释放高能的奇特进程,获得了光学和射电天文学无法获得的信息,从而大大地扩展了天文学的研究领域。
X射线天文学从诞生时起,在短暂时间内,发现了一系列前所未知的新型天体,获得光学天文和射电天文无法得到的天体信息,大大地扩展了天文学的研究领域。X射线天文学所显示的独特威力,使得它在当代空间天文学中处于特别重要的地位。
1、本站所有文本、信息、视频文件等,仅代表本站观点或作者本人观点,请网友谨慎参考使用。
2、本站信息均为作者提供和网友推荐收集整理而来,仅供学习和研究使用。
3、对任何由于使用本站内容而引起的诉讼、纠纷,本站不承担任何责任。
4、如有侵犯你版权的,请来信(邮箱:baike52199@gmail.com)指出,核实后,本站将立即删除。