-
流体力学 编辑
力学的一个分支,主要研究在各种力的作用下,流体本身的静止状态和运动状态以及流体和固体界壁间有相对运动时的相互作用和流动规律。
中文名:流体力学
外文名:fluid mechanics
出现
流体力学是在人类同自然界作斗争和在生产实践中逐步发展起来的。中国有大禹治水疏通江河的传说。秦朝李冰父子(公元前3世纪)领导劳动人民修建了都江堰,至今还在发挥作用。大约与此同时,罗马人建成了大规模的供水管道系统。
对流体力学学科的形成作出贡献的首先是古希腊的阿基米德。他建立了包括物体浮力定理和浮体稳定性在内的液体平衡理论,奠定了流体静力学的基础。此后千余年间,流体力学没有重大发展。
15世纪意大利达·芬奇的著作才谈到水波、管流、水力机械、鸟的飞翔原理等问题。
17世纪,帕斯卡阐明了静止流体中压力的概念。但流体力学尤其是流体动力学作为一门严密的科学,却是随着经典力学建立了速度、加速度,力、流场等概念,以及质量、动量、能量三个守恒定律的奠定之后才逐步形成的。
发展
17世纪力学奠基人I. 牛顿研究了在液体中运动的物体所受到的阻力,得到阻力与流体密度、物体迎流截面积以及运动速度的平方成正比的关系。他对粘性流体运动时的内摩擦力也提出了以下假设:即两流体层间的摩阻应力同此两层的相对滑动速度成正比而与两层间的距离成反比(即牛顿粘性定律)。
之后,法国H. 皮托发明了测量流速的皮托管;达朗贝尔对运河中船只的阻力进行了许多实验工作,证实了阻力同物体运动速度之间的平方关系;瑞士的L. 欧拉采用了连续介质的概念,把静力学中压力的概念推广到运动流体中,建立了欧拉方程,正确地用微分方程组描述了无粘流体的运动;伯努利从经典力学的能量守恒出发,研究供水管道中水的流动,精心地安排了实验并加以分析,得到了流体定常运动下的流速、压力、管道高程之间的关系——伯努利方程。
欧拉方程和伯努利方程的建立,是流体动力学作为一个分支学科建立的标志,从此开始了用微分方程和实验测量进行流体运动定量研究的阶段。
为流体力学发展做出杰出贡献的科学家们
从18世纪起,位势流理论有了很大进展,在水波、潮汐、涡旋运动、声学等方面都阐明了很多规律。法国J.-L. 拉格朗日对于无旋运动,德国H. von 亥姆霍兹对于涡旋运动作了不少研究.上述的研究中,流体的粘性并不起重要作用,即所考虑的是无粘流体,所以这种理论阐明不了流体中粘性的效应。
理论基础
将粘性考虑在内的流体运动方程则是法国C.-L.-M.-H. 纳维于1821年和英国G. G. 斯托克斯于1845年分别建立的,后得名为纳维-斯托克斯方程,它是流体动力学的理论基础。
由于纳维-斯托克斯方程是一组非线性的偏微分方程,用分析方法来研究流体运动遇到很大困难。为了简化方程,学者们采取了流体为不可压缩和无粘性的假设,却得到违背事实的达朗伯佯谬——物体在流体中运动时的阻力等于零。因此,到19世纪末,虽然用分析法的流体动力学取得很大进展,但不易起到促进生产的作用。
与流体动力学平行发展的是水力学(见液体动力学)。这是为了满足生产和工程上的需要,从大量实验中总结出一些经验公式来表达流动参量之间关系的经验科学。
伯努利定理
飞机和空气动力学的发展
20世纪初,飞机的出现极大地促进了空气动力学的发展。航空事业的发展,期望能够揭示飞行器周围的压力分布、飞行器的受力状况和阻力等问题,这就促进了流体力学在实验和理论分析方面的发展。20世纪初,以茹科夫斯基、恰普雷金、普朗特等为代表的科学家,开创了以无粘不可压缩流体位势流理论为基础的机翼理论,阐明了机翼怎样会受到举力,从而空气能把很重的飞机托上天空。机翼理论的正确性,使人们重新认识无粘流体的理论,肯定了它指导工程设计的重大意义。
机翼理论和边界层理论的建立和发展是流体力学的一次重大进展,它使无粘流体理论同粘性流体的边界层理论很好地结合起来。随着汽轮机的完善和飞机飞行速度提高到每秒50米以上,又迅速扩展了从19世纪就开始的,对空气密度变化效应的实验和理论研究,为高速飞行提供了理论指导。20世纪40年代以后,由于喷气推进和火箭技术的应用,飞行器速度超过声速,进而实现了航天飞行,使气体高速流动的研究进展迅速,形成了气体动力学、物理-化学流体动力学等分支学科。
分支和交叉学科的形成
从20世纪60年代起,流体力学开始了流体力学和其他学科的互相交叉渗透,形成新的交叉学科或边缘学科,如物理-化学流体动力学、磁流体力学等;原来基本上只是定性地描述的问题,逐步得到定量的研究,生物流变学就是一个例子。
以这些理论为基础,20世纪40年代,关于炸药或天然气等介质中发生的爆轰波又形成了新的理论,为研究原子弹、炸药等起爆后,激波在空气或水中的传播,发展了爆炸波理论。此后,流体力学又发展了许多分支,如高超声速空气动力学、超音速空气动力学、稀薄空气动力学、电磁流体力学、计算流体力学、两相
解决流体力学问题时,现场观测、实验室模拟、理论分析和数值计算几方面是相辅相成的。实验需要理论指导,才能从分散的、表面上无联系的现象和实验数据中得出规律性的结论。反之,理论分析和数值计算也要依靠现场观测和实验室模拟给出物理图案或数据以建立流动的力学模型和数学模式;最后,还须依靠实验来检验这些模型和模式的完善程度。此外,实际流动往往异常复杂(例如湍流),理论分析和数值计算会遇到巨大的数学和计算方面的困难,得不到具体结果,只能通过现场观测和实验室模拟进行研究。从阿基米德到现在的二千多年,特别是从20世纪以来,流体力学已发展成为基础科学体系的一部分,同时又在工业、农业、交通运输、天文学、地学、生物学、医学等方面得到广泛应用。今后,人们一方面将根据工程技术方面的需要进行流体力学应用性的研究,另一方面将更深入地开展基础研究以探求流体的复杂流动规律和机理。后一方面主要包括:通过湍流的理论和实验研究,了解其结构并建立计算模式;多相流动;流体和结构物的相互作用;边界层流动和分离;生物地学和环境流体流动等问题;有关各种实验设备和仪器等。
流体力学的研究领域包括:
理论流体力学
水动力学
气体动力学
空气动力学
悬浮体力学
湍流理论
粘性流体力学
多相流体力学
渗流力学
物理—化学流体力学
等离子体动力学
电磁流体力学
非牛顿流体力学
流体机械流体力学
旋转与分层流体力学
辐射流体力学
计算流体力学
实验流体力学
环境流体力学
微流体力学
生物流体力学等
1、本站所有文本、信息、视频文件等,仅代表本站观点或作者本人观点,请网友谨慎参考使用。
2、本站信息均为作者提供和网友推荐收集整理而来,仅供学习和研究使用。
3、对任何由于使用本站内容而引起的诉讼、纠纷,本站不承担任何责任。
4、如有侵犯你版权的,请来信(邮箱:baike52199@gmail.com)指出,核实后,本站将立即删除。